1887

Abstract

Flagella-mediated motility is recognized to be one of the major factors contributing to virulence in . Motility of this bacterium is known to be phase variable, although the mechanism of such variation remains unknown. genome sequencing revealed a number of genes prone to phase variation via a slipped-strand mispairing mechanism. Many of these genes are hypothetical and are clustered in the regions involved in formation of three major cell surface structures: capsular polysaccharide, lipooligosaccharide and flagella. Among the genes of unknown function, the flagellar biosynthesis and modification region contains seven hypothetical paralogous genes designated as the motility accessory factor () family. Remarkably, two of these genes ( and ) were found to be identical and both contain homopolymeric G tracts. Using insertional mutagenesis it was demonstrated that one of the genes, , is involved in formation of flagella. Phase variation of the gene via slipped-strand mispairing partially restored motility of the mutant. The family represents a new class of bacterial genes related to flagellar biosynthesis and phase variation. Reversible expression of flagella may be advantageous for the adaptation of to the varied and environments encountered during its life cycle, as well in evasion of the host immune response.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-2-473
2002-02-01
2020-02-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/2/1480473a.html?itemId=/content/journal/micro/10.1099/00221287-148-2-473&mimeType=html&fmt=ahah

References

  1. Bleumink-Pluym N. M., Verschoor F., Gaastra W., van der Zeijst B. A., Fry B. N.. 1999; A novel approach for the construction of a Campylobacter mutant library. Microbiology145:2145–2151[CrossRef]
    [Google Scholar]
  2. Caldwell M. B., Guerry P., Lee E. C., Burans J. P., Walker R. I.. 1985; Reversible expression of flagella in Campylobacter jejuni . Infect Immun50:941–943
    [Google Scholar]
  3. Doig P., Kinsella N., Guerry P., Trust T. J.. 1996; Characterization of a post-translational modification of Campylobacter flagellin: identification of a sero-specific glycosyl moiety. Mol Microbiol19:379–387[CrossRef]
    [Google Scholar]
  4. Guerry P., Alm R. A., Power M. E., Trust J. M.. 1992; Molecular and structural analysis of Campylobacter flagellin. In Campylobacter jejuni: Current Status and Future Trends pp267–281 Edited by Nachamkin I., Blaser M. J., Tomkins L. S.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  5. Guerry P., Doig P., Alm R. A., Burr D. H., Kinsella N., Trust T. J.. 1996; Identification and characterization of genes required for post-translational modification of Campylobacter coli VC167 flagellin. Mol Microbiol19:369–378[CrossRef]
    [Google Scholar]
  6. Henderson I. R., Owen P., Nataro J. P.. 1999; Molecular switches – the ON and OFF of bacterial phase variation. Mol Microbiol33:919–932[CrossRef]
    [Google Scholar]
  7. Jennings M. P., Virji M., Evans D., Foster V., Srikhanta Y. N., Steeghs L., Moxon E. R., van der Ley P.. 1998; Identification of a novel gene involved in pilin glycosylation in Neisseria meningitidis . Mol Microbiol29:975–984[CrossRef]
    [Google Scholar]
  8. Jonsson A. B., Nyberg G., Normark S.. 1991; Phase variation of gonococcal pili by frameshift mutation in pilC , a novel gene for pilus assembly. EMBO J10:477–488
    [Google Scholar]
  9. Linton D., Gilbert M., Hitchen P. G., Dell A., Morris H. R., Wakarchuk W. W., Gregson N. A., Wren B. W.. (2000a).Phase variation of a beta-1,3-galactosyltransferase involved in generation of the ganglioside GM1-like lipo-oligosaccharide of Campylobacter jejuni . Mol Microbiol37:501–514
    [Google Scholar]
  10. Linton D., Karlyshev A. V., Hitchen P. G., Morris H. R., Dell A., Gregson N. A., Wren B. W.. 2000b; Multiple N -acetylneuraminic acid synthetase ( neuB ) genes in Campylobacter jejuni : identification and characterization of the gene involved in sialylation of lipo-oligosaccharide. Mol Microbiol35:1120–1134[CrossRef]
    [Google Scholar]
  11. Macnab R. M.. 1996; Flagella and motility. . In Escherichia coli and Salmonella: Cellular and Molecular Biology pp123–145 Edited by Neidhardt F. C..and others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  12. Nuijten P. J. M., Wassenaar T. M., Newell D. G., van der Zeijst B. A. M.. 1992; Molecular characterization and analysis of Campylobacter jejuni flagellin genes and proteins. In Campylobacter jejuni: Current Status and Future Trends pp282–296 Edited by Nachamkin I., Blaser M. J., Tomkins L. S.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  13. Nuijten P. J., Márquez-Magaña L., van der Zeijst B. A.. 1995; Analysis of flagellin gene expression in flagellar phase variants of Campylobacter jejuni 81116. Antonie Leeuwenhoek67:377–383[CrossRef]
    [Google Scholar]
  14. Park S. F., Purdy D., Leach S.. 2000; Localized reversible frameshift mutation in the flhA gene confers phase variability to flagellin gene expression in Campylobacter coli . J Bacteriol182:207–210[CrossRef]
    [Google Scholar]
  15. Parkhill J., Wren B. W., Mungall K.. 18 other authors 2000; The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature403:665–668[CrossRef]
    [Google Scholar]
  16. Trieu-Cuot P., Gerbaud G., Lambert T., Courvalin P.. 1985; In vivo transfer of genetic information between gram-positive and gram-negative bacteria. EMBO J4:3583–3587
    [Google Scholar]
  17. van Vliet A. H. M., Wooldridge K. G., Ketley J. M.. 1998; Iron-responsive gene regulation in a Campylobacter jejuni fur mutant. J Bacteriol180:5291–5298
    [Google Scholar]
  18. Wang Y., Taylor D. E.. 1990; Chloramphenicol resistance in Campylobacter coli : nucleotide sequence, expression, and cloning vector construction. Gene94:23–28[CrossRef]
    [Google Scholar]
  19. Wassenaar T. M., Fry B. N., van der Zeijst B. A.. 1993; Genetic manipulation of Campylobacter : evaluation of natural transformation and electro-transformation. Gene 132:131–135[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-2-473
Loading
/content/journal/micro/10.1099/00221287-148-2-473
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error