1887

Abstract

The authors compared the differences in tolerance to oxygen of the anaerobic periodontopathic bacteria and , and explored the possibility that might be able to support the growth of in aerated and CO-depleted environments. Both micro-organisms were grown as monocultures and in co-culture in the presence and absence of CO and under different aerated conditions using a continuous culture system. At steady state, viable counts were performed and the activities of the enzymes superoxide dismutase and NADH oxidase/peroxidase were assayed in . In co-culture, was able to support the growth of in aerated and CO-depleted environments in which , as a monoculture, was not able to survive. not only appeared to have a much higher tolerance to oxygen than , but a significant increase in its numbers occurred under moderately oxygenated conditions. might have an additional indirect role in dental plaque maturation, contributing to the reducing conditions necessary for the survival of and possibly other anaerobes less tolerant to oxygen. Additionally, is able to generate a capnophilic environment essential for the growth of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-2-467
2002-02-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/2/1480467a.html?itemId=/content/journal/micro/10.1099/00221287-148-2-467&mimeType=html&fmt=ahah

References

  1. Bradshaw D. J., Marsh P. D., Watson G. K., Allison C. 1998; Role of Fusobacterium nucleatum and coaggregation in anaerobe survival in planktonic and biofilm oral microbial communities during aeration. Infect Immun 66:4729–4732
    [Google Scholar]
  2. Brawn K., Fridovich I. 1981; DNA strand scission by enzymically generated oxygen radicals. Arch Biochem Biophys 206:414–419 [CrossRef]
    [Google Scholar]
  3. Diaz P. I., Zilm P. S., Rogers A. H. 2000; The response to oxidative stress of Fusobacterium nucleatum grown in continuous culture. FEMS Microbiol Lett 187:31–34 [CrossRef]
    [Google Scholar]
  4. Grenier D. 1994; Effect of proteolytic enzymes on the lysis and growth of oral bacteria. Oral Microbiol Immunol 9:224–228 [CrossRef]
    [Google Scholar]
  5. Han Y. W., Shi W., Huang G. T., Kinder Haake S., Park N. H., Kuramitsu H., Genco R. J. 2000; Interactions between periodontal bacteria and human oral epithelial cells: Fusobacterium nucleatum adheres to and invades epithelial cells. Infect Immun 68:3140–3146 [CrossRef]
    [Google Scholar]
  6. Harley J. B., Flaks J. G., Goldfine H., Bayer M. E., Rasmussen H. 1981; Hyperbaric oxygen toxicity and ribosome destruction in Escherichia coli K12. Can J Microbiol 27:44–51 [CrossRef]
    [Google Scholar]
  7. Higuchi M. 1992; Reduced nicotinamide adenine dinucleotide oxidase involvement in defense against oxygen toxicity of Streptococcus mutans . Oral Microbiol Immunol 7:309–314 [CrossRef]
    [Google Scholar]
  8. Imlay J. A., Fridovich I. 1991; Assay of metabolic superoxide production in Escherichia coli . J Biol Chem 266:6957–6965
    [Google Scholar]
  9. Kenny E. B., Ash A. A. Jr 1969; Oxidation reduction potential of developing plaque, periodontal pockets and gingival sulci. J Periodontol 40:630–633 [CrossRef]
    [Google Scholar]
  10. Kolenbrander P. E., Andersen R. N., Moore L. V. 1989; Coaggregation of Fusobacterium nucleatum , Selenomonas flueggei , Selenomonas infelix , Selenomonas noxia , and Selenomonas sputigena with strains from 11 genera of oral bacteria. Infect Immun 57:3194–3203
    [Google Scholar]
  11. Lamont R. J., Jenkinson H. F. 1998; Life below the gum line: pathogenic mechanisms of Porphyromonas gingivalis . Microbiol Mol Biol Rev 62:1244–1263
    [Google Scholar]
  12. Marquis R. E. 1995; Oxygen metabolism, oxidative stress and acid-base physiology of dental plaque biofilms. J Ind Microbiol 15:198–207 [CrossRef]
    [Google Scholar]
  13. Massol-Deya A. A., Whallon J., Hickey R. F., Tiedje J. M. 1994; Biofilm architecture: a fortuitous engineering feature. ASM News 60:406
    [Google Scholar]
  14. McCord J. M., Fridovich I. 1969; Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein. J Biol Chem 244:6049–6055
    [Google Scholar]
  15. Mettraux G. R., Gusberti F. A., Graf H. 1984; Oxygen tension (pO2) in untreated human periodontal pockets. J Periodontol 55:516–521 [CrossRef]
    [Google Scholar]
  16. Park M. K., Myers R. A., Marzella L. 1992; Oxygen tensions and infections: modulation of microbial growth, activity of antimicrobial agents, and immunologic responses. Clin Infect Dis 14:720–740 [CrossRef]
    [Google Scholar]
  17. Poole L. B., Higuchi M., Shimada M., Calzi M. L., Kamio Y. 2000; Streptococcus mutans H2O2-forming NADH oxidase is an alkyl hydroperoxide reductase protein. Free Radic Biol Med 28:108–120 [CrossRef]
    [Google Scholar]
  18. Rosen H., Klebanoff S. J. 1979; Bactericidal activity of a superoxide anion-generating system. A model for the polymorphonuclear leukocyte. J Exp Med 149:27–39 [CrossRef]
    [Google Scholar]
  19. Shah H. N., Williams R. A., Bowden G. H., Hardie J. M. 1976; Comparison of the biochemical properties of Bacteroides melaninogenicus from human dental plaque and other sites. J Appl Bacteriol 41:473–495 [CrossRef]
    [Google Scholar]
  20. Smalley J. W., Birss A. J., Silver J. 2000; The periodontal pathogen Porphyromonas gingivalis harnesses the chemistry of the micro-oxo bishaem of iron protoporphyrin IX to protect against hydrogen peroxide. FEMS Microbiol Lett 183:159–164
    [Google Scholar]
  21. Socransky S. S., Haffajee A. D. 1994; Evidence of bacterial etiology: a historical perspective. Periodontol 2000; 5:7–25 [CrossRef]
    [Google Scholar]
  22. Socransky S. S., Haffajee A. D., Cugini M. A., Smith C., Kent R. L. Jr 1998; Microbial complexes in subgingival plaque. J Clin Periodontol 25:134–144 [CrossRef]
    [Google Scholar]
  23. Ximenez-Fyvie L. A., Haffajee A. D., Socransky S. S. 2000; Comparison of the microbiota of supra- and subgingival plaque in health and periodontitis. J Clin Periodontol 27:648–657 [CrossRef]
    [Google Scholar]
  24. Yoshimura A., Hara Y., Kaneko T., Kato I. 1997; Secretion of IL-1 beta, TNF-alpha, IL-8 and IL-1ra by human polymorphonuclear leukocytes in response to lipopolysaccharides from periodontopathic bacteria. J Periodont Res 32:279–286 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-2-467
Loading
/content/journal/micro/10.1099/00221287-148-2-467
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error