1887

Abstract

encodes a PAK kinase that is involved in morphogenesis and cell integrity. Both over- and underexpressing conditions of affected cell wall composition. Kic1-deficient cells were hypersensitive to the cell wall perturbing agent calcofluor white and had less 1,6-β-glucan. When Kic1-deficient cells were crossed with various mutants, which also have less 1,6-β-glucan in their wall, the double mutants displayed synthetic growth defects. However, when crossed with the 1,3-β-glucan-deficient strain Δ, no synthetic growth defect was observed, supporting a specific role for in regulating 1,6-β-glucan levels. Kic1-deficient cells also became highly resistant to the cell wall-degrading enzyme mixture Zymolyase, and exhibited higher transcript levels of the cell wall protein-encoding genes and . Conversely, overexpression of resulted in increased sensitivity to Zymolyase and in a higher level of 1,6-β-glucan. Multicopy suppressor analysis of a Kic1-deficient strain identified . Consistent with this, expression levels of correlated with 1,6-β-glucan levels in the cell wall. Interestingly, expression levels of and the MAP kinase kinase had opposite effects on Zymolyase sensitivity of the cells and on cell wall 1,6-β-glucan levels in the wall. It is proposed that Kic1 affects cell wall construction in multiple ways and in particular in regulating 1,6-β-glucan levels in the wall.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-12-4035
2002-12-01
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/12/1484035a.html?itemId=/content/journal/micro/10.1099/00221287-148-12-4035&mimeType=html&fmt=ahah

References

  1. Adamo J. E., Rossi G., Brennwald P. 1999; The Rho GTPase Rho3 has a direct role in exocytosis that is distinct from its role in actin polarity. Mol Biol Cell 10:4121–4133 [CrossRef]
    [Google Scholar]
  2. Al-Aidroos K., Bussey H. 1978; Chromosomal mutants of Saccharomyces cerevisiae affecting the cell wall binding site for killer factor. Can J Microbiol 24:228–237 [CrossRef]
    [Google Scholar]
  3. Alonso-Monge R., Real E., Wojda I., Bebelman J. P., Mager W. H., Siderius M. 2001; Hyperosmotic stress response and regulation of cell wall integrity in Saccharomyces cerevisiae share common functional aspects. Mol Microbiol 41:717–730 [CrossRef]
    [Google Scholar]
  4. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidmen J. G., Smith J. A., Struhl K. (editors) 1998 Current Protocols in Molecular Biology New York: Greene Publishing & Wiley Interscience;
    [Google Scholar]
  5. Berben G., Dumont J., Gilliquet V., Bolle P. A., Hilger F. 1991; The YDp plasmids: a uniform set of vectors bearing versatile gene disruption cassettes for Saccharomyces cerevisiae . Yeast 7:475–477 [CrossRef]
    [Google Scholar]
  6. Boone C., Sommer S. S., Hensel A., Bussey H. 1990; Yeast KRE genes provide evidence for a pathway of cell wall beta-glucan assembly. J Cell Biol 110:1833–1843 [CrossRef]
    [Google Scholar]
  7. Breinig F., Tipper D. J., Schmitt M. J. 2002; Kre1p, the plasma membrane receptor for the yeast K1 viral toxin. Cell 108:395–405 [CrossRef]
    [Google Scholar]
  8. Brown J. L., Bussey H. 1993; The yeast KRE9 gene encodes an O glycoprotein involved in cell surface beta-glucan assembly. Mol Cell Biol 13:6346–6356
    [Google Scholar]
  9. Brown J. L., Kossaczka Z., Jiang B., Bussey H. 1993; A mutational analysis of killer toxin resistance in Saccharomyces cerevisiae identifies new genes involved in cell wall (1-- 6)-beta-glucan synthesis. Genetics 133:837–849
    [Google Scholar]
  10. Brown J. L., Roemer T., Lussier M., Sdicu A. M., Bussey H. 1994; The K1 killer toxin: molecular and genetic applications to secretion and cell surface assembly. In Molecular Genetics of Yeast: a Practical Approach pp 217–232 Edited by Johnston J. R. Oxford: IRL Press at Oxford University Press;
    [Google Scholar]
  11. Buehrer B. M., Errede B. 1997; Coordination of the mating and cell integrity mitogen-activated protein kinase pathways in Saccharomyces cerevisiae . Mol Cell Biol 17:6517–6525
    [Google Scholar]
  12. Bussey H. 1991; K1 killer toxin, a pore forming protein from yeast. Mol Microbiol 5:2339–2343 [CrossRef]
    [Google Scholar]
  13. Bussey H., Saville D., Hutchins K., Palfree R. G. 1979; Binding of yeast killer toxin to a cell wall receptor on sensitive Saccharomyces cerevisiae . J Bacteriol 140:888–892
    [Google Scholar]
  14. De Nobel J. G., Klis F. M., Priem J., Munnik T., Van Den Ende H. 1990; The glucanase-soluble mannoproteins limit cell wall porosity in Saccharomyces cerevisiae . Yeast 6:491–499 [CrossRef]
    [Google Scholar]
  15. De Groot P. W. J., Ruiz C., Vazquez de Aldana C. R. 14 other authors 2001; A genomic approach for the identification and classification of genes involved in cell wall formation and its regulation in Saccharomyces cerevisiae . Comp Funct Genomics 2:124–142 [CrossRef]
    [Google Scholar]
  16. Doi K., Gartner A., Ammerer G., Errede B., Shinkawa H., Sugimoto K., Matsumoto K. 1994; MSG5 , a novel protein phosphatase promotes adaptation to pheromone response in S. cerevisiae . EMBO J 13:61–70
    [Google Scholar]
  17. Dubois M., Gilles K. A., Hamilton J. K., Rebers P. A., Smith F. 1956; Colometric method for determination of sugars and related substances. Anal Chem 28:350–356 [CrossRef]
    [Google Scholar]
  18. Garcı́a-Rodriguez L. J., Durán A., Roncero C. 2000; Calcofluor antifungal action depends on chitin and a functional high-osmolarity glycerol response (HOG) pathway: evidence for a physiological role of the Saccharomyces cerevisiae HOG pathway under noninducing conditions. J Bacteriol 182:2428–2437 [CrossRef]
    [Google Scholar]
  19. Gietz R. D., Sugino A. 1988; New yeast- Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74:527–534 [CrossRef]
    [Google Scholar]
  20. Imai J., Toh-e A., Matsui Y. 1996; Genetic analysis of the Saccharomyces cerevisiae RHO3 gene, encoding a rho-type small GTPase, provides evidence for a role in bud formation. Genetics 142:359–369
    [Google Scholar]
  21. Ivanovska I., Rose M. D. 2001; Fine structure analysis of the yeast centrin, Cdc31p, identifies residues specific for cell morphology and spindle pole body duplication. Genetics 157:503–518
    [Google Scholar]
  22. Jiang B., Ram A. F. J., Sheraton J., Klis F. M., Bussey H. 1995; Regulation of cell wall beta-glucan assembly: PTC1 negatively affects PBS2 action in a pathway that includes modulation of EXG1 transcription. Mol Gen Genet 248:260–269 [CrossRef]
    [Google Scholar]
  23. Jiang B., Sheraton J., Ram A. F. J., Dijkgraaf G. J., Klis F. M., Bussey H. 1996; CWH41 encodes a novel endoplasmic reticulum membrane N-glycoprotein involved in beta 1,6-glucan assembly. J Bacteriol 178:1162–1171
    [Google Scholar]
  24. Kapteyn J. C., Van Egmond P., Sievi E., Van Den Ende H., Makarow M., Klis F. M. 1999; The contribution of the O -glycosylated protein Pir2p/Hsp150 to the construction of the yeast cell wall in wild-type cells and beta-1,6-glucan-deficient mutants. Mol Microbiol 31:1835–1844 [CrossRef]
    [Google Scholar]
  25. Kapteyn J. C., ter Riet B., Vink E., Blad S., De Nobel H., Van Den Ende H., Klis F. M. 2001; Low external pH induces HOG1 -dependent changes in the organization of the Saccharomyces cerevisiae cell wall. Mol Microbiol 39:469–479 [CrossRef]
    [Google Scholar]
  26. Kasten M. M., Stillman D. J. 1997; Identification of the Saccharomyces cerevisiae genes STB1 - STB5 encoding Sin3p binding proteins. Mol Gen Genet 256:376–386 [CrossRef]
    [Google Scholar]
  27. Klis F. M., Mol P. C., Hellingwerf K., Brul S. 2002; Dynamics of cell wall structure in Saccharomyces cerevisiae . FEMS Microbiol Rev 26:239–256 [CrossRef]
    [Google Scholar]
  28. Lai M. H., Silverman S. J., Gaughran J. P., Kirsch D. R. 1997; Multiple copies of PBS2 , MHP1 or LRE1 produce glucanase resistance and other cell wall effects in Saccharomyces cerevisiae . Yeast 13:199–213 [CrossRef]
    [Google Scholar]
  29. Lussier M., White A. M., Sheraton J. 17 other authors 1997; Large scale identification of genes involved in cell surface biosynthesis and architecture in Saccharomyces cerevisiae . Genetics 147:435–450
    [Google Scholar]
  30. Martı́n H., Rodriguez-Pachon J. M., Ruiz C., Nombela C., Molina M. 2000; Regulatory mechanisms for modulation of signaling through the cell integrity Slt2-mediated pathway in Saccharomyces cerevisiae . J Biol Chem 275:1511–1519 [CrossRef]
    [Google Scholar]
  31. Matsui Y., Toh-e A. 1992a; Isolation and characterization of two novel ras superfamily genes in Saccharomyces cerevisiae . Gene 114:43–49 [CrossRef]
    [Google Scholar]
  32. Matsui Y., Toh-e A. 1992b; Yeast RHO3 and RHO4 ras superfamily genes are necessary for bud growth, and their defect is suppressed by a high dose of bud formation genes CDC42 and BEM1 . Mol Cell Biol 12:5690–5699
    [Google Scholar]
  33. Popolo L., Vai M. 1999; The Gas1 glycoprotein, a putative wall polymer cross-linker. Biochim Biophys Acta 1426:385–400 [CrossRef]
    [Google Scholar]
  34. Ram A. F. J., Wolters A., Ten Hoopen R., Klis F. M. 1994; A new approach for isolating cell wall mutants in Saccharomyces cerevisiae by screening for hypersensitivity to calcofluor white. Yeast 10:1019–1030 [CrossRef]
    [Google Scholar]
  35. Ram A. F. J., Brekelmans S. S. C., Oehlen L. J. W. M., Klis F. M. 1995; Identification of two cell cycle regulated genes affecting the beta-1,3-glucan content of cell walls in Saccharomyces cerevisiae . FEBS Lett 358:165–170 [CrossRef]
    [Google Scholar]
  36. Ram A. F. J., Kapteyn J. C., Montijn R. C., Caro L. H. P., Douwes J. E., Baginsky W., Mazur P., Van Den Ende H., Klis F. M. 1998; Loss of the plasma membrane-bound protein Gas1p in Saccharomyces cerevisiae results in the release of beta-1,3-glucan into the medium and induces a compensation mechanism to ensure cell wall integrity. J Bacteriol 180:1418–1424
    [Google Scholar]
  37. Reneke J. E., Blumer K. J., Courchesne W. E., Thorner J. 1988; The carboxy-terminal segment of the yeast alpha-factor receptor is a regulatory domain. Cell 55:221–234 [CrossRef]
    [Google Scholar]
  38. Robinson N. G., Guo L., Imai J., Toh-e A., Matsui Y., Tamanoi F. 1999; Rho3 of Saccharomyces cerevisiae , which regulates the actin cytoskeleton and exocytosis, is a GTPase which interacts with Myo2 and Exo70. Mol Cell Biol 19:3580–3587
    [Google Scholar]
  39. Roemer T., Bussey H. 1991; Yeast beta-glucan synthesis: KRE6 encodes a predicted type II membrane protein required for glucan synthesis in vivo and for glucan synthase activity in vitro. Proc Natl Acad Sci USA 88:11295–11299 [CrossRef]
    [Google Scholar]
  40. Roncero C., Valdivieso M. H., Ribas J. C., Duran A. 1988; Isolation and characterization of Saccharomyces cerevisiae mutants resistant to calcofluor white. J Bacteriol 170:1950–1954
    [Google Scholar]
  41. Rose M. D., Novick P., Thomas J. H., Bothstein D., Fink G. R. 1987; A Saccharomyces cerevisiae genomic plasmid bank based on a centromeric-containing shuttle vector. Gene 60:237–243 [CrossRef]
    [Google Scholar]
  42. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  43. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequence with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467 [CrossRef]
    [Google Scholar]
  44. Shahinian S., Bussey H. 2000; β-1,6-Glucan synthesis in Saccharomyces cerevisiae . Mol Microbiol 35:477–489
    [Google Scholar]
  45. Sherman F., Hicks J. 1991; Micromanipulation and dissection of asci. Methods Enzymol 194:21–37
    [Google Scholar]
  46. Shimoi H., Kitagaki H., Ohmori H., Iimura Y., Ito K. 1998; Sed1p is a major cell wall protein of Saccharomyces cerevisiae in the stationary phase and is involved in lytic enzyme resistance. J Bacteriol 180:3381–3387
    [Google Scholar]
  47. Sullivan D. S., Biggins S., Rose M. D. 1998; The yeast centrin, Cdc31p, and the interacting protein kinase, Kic1p, are required for cell integrity. J Cell Biol 143:751–765 [CrossRef]
    [Google Scholar]
  48. Terashima H., Yabuki N., Arisawa M., Hamada K., Kitada K. 2000; Up-regulation of genes encoding glycosylphosphatidylinositol (GPI)-attached proteins in response to cell wall damage caused by disruption of FKS1 in Saccharomyces cerevisiae . Mol Gen Genet 264:64–74 [CrossRef]
    [Google Scholar]
  49. Van Berkel M. A., Rieger M., te Heesen S., Ram A. F. J., Van Den Ende H., Aebi M., Klis F. M. 1999; The Saccharomyces cerevisiae CWH8 gene is required for full levels of dolichol-linked oligosaccharides in the endoplasmic reticulum and for efficient N -glycosylation. Glycobiology 9:243–253 [CrossRef]
    [Google Scholar]
  50. Van Der Vaart J. M., Caro L. H. P., Chapman J. W., Klis F. M., Verrips C. T. 1995; Identification of three mannoproteins in the cell wall of Saccharomyces cerevisiae . J Bacteriol 177:3104–3110
    [Google Scholar]
  51. Van Rinsum J., Klis F. M., Van Den Ende H. 1991; Cell wall glucomannoproteins of Saccharomyces cerevisiae mnn9 . Yeast 7:717–726 [CrossRef]
    [Google Scholar]
  52. Vossen J. H., Ram A. F. J., Klis F. M. 1995; Identification of SPT14/CHW6 as the yeast homologue of hPIG-A, a gene involved in the biosynthesis of GPI anchors. Biochim Biophys Acta 1243:549–551l [CrossRef]
    [Google Scholar]
  53. Watanabe Y., Irie K., Matsumoto K. 1995; Yeast RLM1 encodes a serum response factor-like protein that may function downstream of the Mpk1 (Slt2) mitogen-activated protein kinase pathway. Mol Cell Biol 15:5740–5749
    [Google Scholar]
  54. Winston F., Dollard C., Ricupero-Hovasse S. L. 1995; Construction of a set of convenient Saccharomyces cerevisiae strains that are isogenic to S288C. Yeast 11:53–55 [CrossRef]
    [Google Scholar]
  55. Zhan X. L., Deschenes R. J., Guan K. L. 1997; Differential regulation of FUS3 MAP kinase by tyrosine-specific phosphatases PTP2 / PTP3 and dual-specificity phosphatase MSG5 in Saccharomyces cerevisiae . Genes Dev 11:1690–1702 [CrossRef]
    [Google Scholar]
  56. Zlotnik H., Fernandez M. P., Bowers B., Cabib E. 1984; Saccharomyces cerevisiae mannoproteins form an external cell wall layer that determines wall porosity. J Bacteriol 159:1018–1026
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-12-4035
Loading
/content/journal/micro/10.1099/00221287-148-12-4035
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error