1887

Abstract

In , one full-length chitin synthase () and fragments of two other chitin synthases ( and ) were identified. The deduced amino acid sequence of was similar (87% identity) to from , which encodes a class III chitin synthase. The sequence obtained for indicated that it had high similarity to class V chitin synthases. and disruption strains and a strain in which transcription was controlled were constructed using the nitrite reductase () promoter. The strains were examined during hyphal growth by Northern analysis, analysis of the cell-wall composition and growth in the presence of Calcofluor white (CFW). The disrupted strain and the uninduced strain exhibited hyperbranching, they had a lower level of conidiation than the wild-type and were sensitive to CFW at 50 mg l. When transcription was induced in the strain containing the construct, the strain displayed wild-type morphology on solid medium and at sub-maximum growth rates but the wild-type morphology was not fully restored during rapid growth in batch cultivation. The disruption strain displayed morphological abnormalities, such as ballooning cells, intrahyphal hyphae and conidial scars. The growth was severely inhibited in the presence of 10 mg CFW l. In none of the constructed strains did the cell-wall composition differ from the wild-type. Northern analysis indicated no change in the transcription of the chitin synthase genes and when expression was altered, and there was no change in the transcription of and when was disrupted.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-12-4025
2002-12-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/12/1484025a.html?itemId=/content/journal/micro/10.1099/00221287-148-12-4025&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  2. Andrianopoulos A., Timberlake W. E. 1994; The Aspergillus nidulans abaA gene encodes a transcriptional activator that acts as a genetic switch to control development. Mol Cell Biol 14:2503–2515 [CrossRef]
    [Google Scholar]
  3. Bartnicki-Garcia S., Lippman E. 1969; Fungal morphogenesis: cell wall construction in Mucor rouxii . Science 165:302–304 [CrossRef]
    [Google Scholar]
  4. Borgia P. T., Iartchouk N., Riggle P. J., Winter K. R., Koltin Y., Bulawa C. E. 1996; The chsB gene of Aspergillus nidulans is necessary for normal hyphal growth and development. Fungal Genet Biol 20:193–203 [CrossRef]
    [Google Scholar]
  5. Brody H., Yaver D. S., Lamsa M., Hansen K. 1997; Method for modifying the production of a polypeptide. US patent no. 5958727
    [Google Scholar]
  6. Burnett J. H. 1979; Aspects of the structure and growth of hyphal walls. In Fungal Walls and Hyphal Growth pp 1–25 Edited by Burnett J. H., Trinci A. P. J. Cambridge: Cambridge University Press;
    [Google Scholar]
  7. Carlsen M., Spohr A. B., Nielsen J., Villadsen J. 1996; Morphology and physiology of an α-amylase producing strain of Aspergillus oryzae during batch cultivations. Biotechnol Bioeng 49:266–276
    [Google Scholar]
  8. Chang Y. C., Timberlake W. E. 1993; Identification of Aspergillus brlA response elements (BREs) by genetic selection in yeast. Genetics 133:29–38
    [Google Scholar]
  9. Christensen T., Woeldike H., Boel E., Mortensen S. B., Hjortshoej K., Thim L., Hansen M. T. 1988; High level expression of recombinant genes in Aspergillus oryzae . Bio/Technology 6:1419–1422 [CrossRef]
    [Google Scholar]
  10. Cove D. J. 1966; The induction and repression of nitrate reductase in the fungus Aspergillus nidulans . Biochim Biophys Acta 113:51–56 [CrossRef]
    [Google Scholar]
  11. Culp D. W., Dodge C. L., Miao Y., Li L., Sag-Ozkal D., Borgia P. T. 2000; The chsA gene from Aspergillus nidulans is necessary for maximal conidiation. FEMS Microbiol Lett 182:349–353 [CrossRef]
    [Google Scholar]
  12. Dallies N., Francois J., Paquet V. 1998; A new method for quantitative determination of polysaccharides in the yeast cell wall. Application to the cell wall defective mutants of Saccharomyces cerevisiae . Yeast 14:1297–1306 [CrossRef]
    [Google Scholar]
  13. Elorza M. V., Rico H., Sentandreu R. 1983; Calcofluor white alters the assembly of chitin fibrils in Saccharomyces cerevisiae and Candida albicans cells. J Gen Microbiol 129:1577–1582
    [Google Scholar]
  14. Fujiwara M., Horiuchi H., Ohta A., Takagi M. 1997; A novel fungal gene encoding chitin synthase with a myosin motor-like domain. Biochem Biophys Res Commun 236:75–78 [CrossRef]
    [Google Scholar]
  15. Fujiwara M., Ichinomiya M., Motoyama T., Horiuchi H., Otha A., Takagi M. 2000; Evidence that the Aspergillus nidulans class I and class II chitin synthase genes, chsC and chsA , share critical roles in hyphal wall integrity and conidiophore development. J Biochem 127:359–366 [CrossRef]
    [Google Scholar]
  16. Gooday G. W. 1971; An autoradiographic study of hyphal growth of some fungi. J Gen Microbiol 67:125–133 [CrossRef]
    [Google Scholar]
  17. Horiuchi H., Takagi M. 1999; Chitin synthase genes of Aspergillus species. In Contributions to Microbiology vol. 2Aspergillus fumigatus. Biology, Clinical Aspects and Molecular Approaches pp 193–204 Edited by Brakhage A. A., Jahn B., Schmidt A. Basel: Karger;
    [Google Scholar]
  18. Horiuchi H., Fujiwara M., Yamashita S., Otha A., Takagi M. 1999; Proliferation of intrahyphal hyphae caused by disruption of csmA , which encodes a class V chitin synthase with a myosin motor-like domain in Aspergillus nidulans . J Bacteriol 181:3721–3729
    [Google Scholar]
  19. Maeda H., Ishida N. 1967; Specificity of binding of hexopyranosyl polysaccharides with fluorescent brightener. J Biochem 62:276–278
    [Google Scholar]
  20. McIntyre M., Müller C., Dynesen J., Nielsen J. 2001; Metabolic engineering of the morphology of Aspergillus . Adv Biochem Eng Biotechnol 73:103–128
    [Google Scholar]
  21. Mellado E., Aufauvre-Brown A., Gow N. A. R., Holden D. W. 1996; The Aspergillus fumigatus chsC and chsG genes encode class III chitin synthases with different functions. Mol Microbiol 20:667–679 [CrossRef]
    [Google Scholar]
  22. Motoyama T., Kojima N., Horiuchi H., Otha A., Takagi M. 1994; Isolation of a chitin synthase gene ( chsC ) of Aspergillus nidulans . Biosci Biotechnol Biochem 58:2254–2257 [CrossRef]
    [Google Scholar]
  23. Motoyama T., Fujiwara M., Kojima N., Horiuchi H., Otha A., Takagi M. 1996; The Aspergillus nidulans genes chsA and chsD encode chitin synthases which have redundant functions in conidia formation. Mol Gen Genet 251:520–528
    [Google Scholar]
  24. Müller C., Spohr A. B., Nielsen J. 2000; Role of substrate concentration in mitosis and hyphal extension of Aspergillus . Biotechnol Bioeng 67:390–397 [CrossRef]
    [Google Scholar]
  25. Müller C., McIntyre M., Hansen K., Nielsen J. 2002; Metabolic engineering of the morphology of Aspergillus oryzae by altering chitin synthesis. Appl Environ Microbiol 68:1827–1836 [CrossRef]
    [Google Scholar]
  26. Nagahashi S., Sudoh M., Ono N. 7 other authors 1995; Characterization of chitin synthase 2 of Saccharomyces cerevisiae . Implication of two highly conserved domains as possible catalytic sites. J Biol Chem 270:13961–13967 [CrossRef]
    [Google Scholar]
  27. Park I. C., Horiuchi H., Hwang C. W., Yeh W. H., Ohta A., Ryu J. C., Takagi M. 1999; Isolation of csm1 encoding a class V chitin synthase with a myosin motor-like domain from the rice blast fungus, Pyricularia oryzae . FEMS Microbiol Lett 170:131–139 [CrossRef]
    [Google Scholar]
  28. Pedersen K. L., Lehmbeck J., Christensen T. 1999; A new transcriptional activator for amylase genes in Aspergillus . Mol Gen Genet 262:668–676 [CrossRef]
    [Google Scholar]
  29. Rudall K. M. 1969; Chitin and its association with other molecules. J Polym Sci 28:83–102
    [Google Scholar]
  30. Ruiz-Herrera J., Martinez-Espinoza A. D. 1999; Chitin biosynthesis and structural organization in vivo . EXS 87:39–53
    [Google Scholar]
  31. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  32. Specht C. A., Liu Y., Robbins P. W. 8 other authors 1996; The chsD and chsE genes of Aspergillus nidulans and their roles in chitin synthesis. Fungal Genet Biol 20:153–167 [CrossRef]
    [Google Scholar]
  33. Straubinger B., Straubinger E., Wirsel S., Turgeon G., Yoder O. 1992; Versatile fungal transformation vectors carrying the selectable bar gene of Streptomyces hygroscopius . Fungal Genet Newsl 39:82–83
    [Google Scholar]
  34. Xoconostle-Cázares B., Specht C. A., Robbins P. W., Liu Y., León C., Ruiz-Herrera J. 1997; Umchs5 , a gene coding for a class IV chitin synthase in Ustilago maydis . Fungal Genet Biol 22:199–208 [CrossRef]
    [Google Scholar]
  35. Yanai K., Kojima N., Takaya N., Horiuchi H., Otha A., Takagi M. 1994; Isolation and characterization of two chitin synthases genes from Aspergillus nidulans . Biosci Biotechnol Biochem 58:1828–1835 [CrossRef]
    [Google Scholar]
  36. Yaver D. S., Lamsa M., Munds R., Brown S. H., Otani S., Franssen L., Johnstone J. A., Brody H. 2000; Using DNA-tagged mutagenesis to improve heterologous protein production in Aspergillus oryzae . Fungal Genet Biol 29:28–37 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-12-4025
Loading
/content/journal/micro/10.1099/00221287-148-12-4025
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error