1887

Abstract

The gene of encodes the pseudouridine-55 (ψ55) synthase and is responsible for modifying all tRNA molecules in the cell at the U55 position. A null mutant grew normally on all growth media tested, but exhibited a competitive disadvantage in extended co-culture with its wild-type progenitor. The mutant phenotype could be complemented by both the cloned gene and by a D48C, catalytically inactive allele of . The mutant also exhibited a defect in survival of rapid transfer from 37 to 50 °C. This mutant phenotype could be complemented by the cloned gene but not by a D48C, catalytically inactive allele of . The temperature sensitivity of mutants could be enhanced by combination with a mutation in the gene, encoding an mU-methyltransferase, modifying the universal U54 tRNA nucleoside, but not by mutations in , encoding the enzyme catalysing the formation of Gm18. The mutant proteome contained altered levels of intermediates involved in biogenesis of the outer-membrane proteins OmpA and OmpX. The mutation also reduced the basal expression from two σ promoters, and P3. Three novel aspects to the phenotype of mutants were identified. Importantly the data support the hypothesis that TruB-effected ψ55 modification of tRNA is not essential, but contributes to thermal stress tolerance in , possibly by optimizing the stability of the tRNA population at high temperatures.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-11-3511
2002-11-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/11/1483511a.html?itemId=/content/journal/micro/10.1099/00221287-148-11-3511&mimeType=html&fmt=ahah

References

  1. Amann, E., Ochs, B. & Abel, K.-J. ( 1988; ). Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in Escherichia coli. Gene 69, 301-315.[CrossRef]
    [Google Scholar]
  2. Becker, H. F., Motorin, Y., Planta, R. J. & Grosjean, H. ( 1997; ). The yeast gene YNL292w encodes a pseudouridine synthase (Pus4) catalyzing the formation of psi55 in both mitochondrial and cytoplasmic tRNAs. Nucleic Acids Res 25, 4493-4499.[CrossRef]
    [Google Scholar]
  3. Bjork, G. R. & Neidhardt, F. C. ( 1975; ). Physiological and biochemical studies on the function of 5-methyluridine in the transfer ribonucleic acid of Escherichia coli. J Bacteriol 124, 99-111.
    [Google Scholar]
  4. Buck, M. & Griffiths, E. ( 1982; ). Iron mediated methylation of tRNA as a regulator of operon expression in Escherichia coli. Nucleic Acids Res 10, 2609-2624.[CrossRef]
    [Google Scholar]
  5. Connolly, D. M. & Winkler, M. E. ( 1991; ). Structure of Escherichia coli K-12 miaA and characterization of the mutator phenotype caused by miaA insertion mutations. J Bacteriol 173, 1711-1721.
    [Google Scholar]
  6. Danese, P. N., Snyder, W. B., Cosma, C. L., Davis, L. J. B. & Silhavy, T. J. ( 1995; ). The Cpx two-component transduction pathway of Escherichia coli regulates transcription of the gene specifying the stress-inducible periplasmic protease, DepP. Genes Dev 9, 387-398.[CrossRef]
    [Google Scholar]
  7. De Las Penas, A., Connolly, L. & Gross, C. A. ( 1997; ). σE is an essential sigma factor in Escherichia coli. J Bacteriol 179, 6862-6864.
    [Google Scholar]
  8. Dinnbier, U., Limpinsel, E., Schmid, R. & Bakker, E. P. ( 1988; ). Transient accumulation of potassium glutamate and its replacement by trehalose during adaptation of growing cells of Escherichia coli K-12 to elevated sodium chloride concentrations. Arch Microbiol 150, 348-357.[CrossRef]
    [Google Scholar]
  9. Durand, J. M., Okada, N., Tobe, T. & 7 other authors ( 1994; ). vacC, a virulence-associated chromosomal locus of Shigella flexneri, is homologous to tgt, a gene encoding tRNA-guanine transglycolase (Tgt) of Escherichia coli K12. J Bacteriol 176, 4627–4634.
    [Google Scholar]
  10. Durand, J. M., Bjork, G. R., Kuwae, A., Yoshikawa, M. & Sasakawa, C. ( 1997; ). The modified nucleoside 2-methylthio-N 6-isopentyladenosine in tRNA of Shigella flexneri is required for expression of virulence genes. J Bacteriol 179, 5777-5782.
    [Google Scholar]
  11. Emilsson, V., Naslund, A. K. & Kurland, C. G. ( 1992; ). Thiolation of transfer RNA in Escherichia coli varies with growth rate. Nucleic Acids Res 20, 4499-4505.[CrossRef]
    [Google Scholar]
  12. Erickson, J. W. & Gross, C. A. ( 1989; ). Identification of the sigma E subunit of Escherichia coli RNA polymerase: a second alternate sigma factor involved in high-temperature gene expression. Genes Dev 3, 1462-1471.[CrossRef]
    [Google Scholar]
  13. Erickson, J. W., Vaughn, V., Walter, W. A., Neidhardt, F. C. & Gross, C. A. ( 1987; ). Regulation of the promoters and transcripts of rpoH, the Escherichia coli heat shock regulatory gene. Genes Dev 1, 419-432.[CrossRef]
    [Google Scholar]
  14. Gutgsell, N., Englund, N., Niu, L., Kaya, Y., Lane, B. G. & Ofengand, J. ( 2000; ). Deletion of the Escherichia coli pseudouridine synthase gene truB blocks formation of pseudouridine 55 in tRNA in vivo, does not affect exponential growth, but confers a strong selective disadvantage in competition with wild-type cells. RNA 6, 1870-1881.[CrossRef]
    [Google Scholar]
  15. Hiratsu, K., Amemura, M., Nashimoto, H., Shinagawa, H. & Makino, K. ( 1995; ). The rpoE gene of Escherichia coli, which encodes σE, is essential for bacterial growth at high temperature. J Bacteriol 177, 2918-2922.
    [Google Scholar]
  16. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.[CrossRef]
    [Google Scholar]
  17. Li, J. N. & Bjork, G. R. (1995). 1-Methylguanosine deficiency of tRNA influences cognate codon interaction and metabolism in Salmonella typhimurium. J Bacteriol 177.
  18. Lipinska, B., Sharma, S. & Georgopoulos, C. ( 1988; ). Sequence analysis and regulation of the htrA gene of Escherichia coli: a sigma 32-independent mechanism of heat-inducible transcription. Nucleic Acids Res 16, 10053-10067.[CrossRef]
    [Google Scholar]
  19. Lipinska, B., Fayet, O., Baird, L. & Georgopoulos, C. ( 1989; ). Identification, characterization, and mapping of the Escherichia coli htrA gene, whose product is essential for bacterial growth only at elevated temperatures. J Bacteriol 171, 1574-1584.
    [Google Scholar]
  20. McLaggan, D., Naprstek, J., Buurman, E. T. & Epstein, W. ( 1994; ). Interdependence of K+ and glutamate accumulation during osmotic adaptation of Escherichia coli. J Biol Chem 269, 1911-1917.
    [Google Scholar]
  21. Mecsas, J., Rouviere, P. E., Erickson, J. W., Donohue, T. J. & Gross, C. A. ( 1993; ). The activity of σE, an Escherichia coli heat-inducible σ-factor, is modulated by expression of outer membrane proteins. Genes Dev 7, 2618-2628.[CrossRef]
    [Google Scholar]
  22. Miller, J. H. (1972). Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  23. Milton, D. L., O’Toole, R., Horstedt, P. & Wolf-Watz, H. ( 1996; ). Flagellin A is essential for the virulence of Vibrio anguillarum. J Bacteriol 178, 1310-1319.
    [Google Scholar]
  24. Mizuno, T., Chou, M.-Y. & Inouye, M. ( 1984; ). A unique mechanism regulating gene expression: translational inhibition by a complementary RNA transcript (micRNA). Proc Natl Acad Sci USA 81, 1966-1970.[CrossRef]
    [Google Scholar]
  25. Nazarenko, I. A., Harrington, K. M. & Uhlenbeck, O. C. ( 1994; ). Many of the conserved nucleotides of tRNA(Phe) are not essential for ternary complex formation and peptide elongation. EMBO J 13, 2464-2471.
    [Google Scholar]
  26. Nurse, K., Wrzesinski, J., Bakin, A., Lane, B. G. & Ofengand, J. ( 1995; ). Purification, cloning, and properties of the tRNA psi 55 synthase from Escherichia coli. RNA 1, 102-112.
    [Google Scholar]
  27. Persson, B. C. ( 1993; ). Modification of tRNA as a regulatory device. Mol Microbiol 8, 1011-1016.[CrossRef]
    [Google Scholar]
  28. Persson, B. C., Gustafsson, C., Berg, D. E. & Björk, G. R. ( 1992; ). The gene for a tRNA modifying enzyme, m5U54-methyltransferase, is essential for viability in Escherichia coli. Proc Natl Acad Sci USA 89, 3995-3998.[CrossRef]
    [Google Scholar]
  29. Persson, B. C., Jäger, G. & Gustafsson, C. ( 1997; ). The spoU gene of Escherichia coli, the fourth gene of the spoT operon, is essential for tRNA(Gm18) 2′-O-methyltransferase activity. Nucleic Acids Res 25, 4093-4097.[CrossRef]
    [Google Scholar]
  30. Persson, B. C., Olafsson, O., Lundgren, H. K., Hederstedt, L. & Bjork, G. R. ( 1998; ). The ms2io6A37 modification of tRNA in Salmonella typhimurium regulates growth on citric acid cycle intermediates. J Bacteriol 180, 3144-3151.
    [Google Scholar]
  31. Piddock, L. J. V., Traynor, E. A. & Wise, R. ( 1990; ). A comparison of the mechanisms of decreased susceptibility of aztreonam-resistant and ceftazidime-resistant Enterobacteriaceae. J Antimicrob Chemother 26, 749-762.[CrossRef]
    [Google Scholar]
  32. Raina, S., Missiakas, D. & Georgopoulos, C. ( 1995; ). The rpoE gene encoding the σE24) heat shock sigma factor of Escherichia coli. EMBO J 14, 1043-1055.
    [Google Scholar]
  33. Ramabhadran, T. V. & Jagger, J. ( 1975; ). Evidence against DNA as the target for 334 nm-induced growth delay in Escherichia coli. Photochem Photobiol 21, 227-233.[CrossRef]
    [Google Scholar]
  34. Ramamurthy, V., Swann, S. L., Paulson, J. L., Spedaliere, C. J. & Mueller, E. G. ( 1999; ). Critical aspartic acid residues in pseudouridine synthases. J Biol Chem 274, 22225-22230.[CrossRef]
    [Google Scholar]
  35. Raychaudhuri, S., Niu, L., Conrad, J., Lane, B. G. & Ofengand, J. ( 1999; ). Functional effect of deletion and mutation of the Escherichia coli ribosomal RNA and tRNA pseudouridine synthase RluA. J Biol Chem 274, 18880-18886.[CrossRef]
    [Google Scholar]
  36. Roe, A. J., McLaggan, D., Davidson, I., O’Byrne, C. & Booth, I. R. ( 1998; ). Perturbation of anion balance during inhibition of growth of Escherichia coli by weak acids. J Bacteriol 180, 767-772.
    [Google Scholar]
  37. Rouviere, P. E., De Las Penas, A., Mecsas, J., Lu, C. Z., Rudd, K. E. & Gross, C. A. ( 1995; ). rpoE, the gene encoding the second heat-shock sigma factor, σE, in Escherichia coli. EMBO J 14, 1032-1042.
    [Google Scholar]
  38. Rudinger, J., Blechschmidt, B., Ribeiro, S. & Sprinzl, M. ( 1994; ). Minimalist aminoacylated RNAs as efficient substrates for elongation factor Tu. Biochemistry 33, 5682-5688.[CrossRef]
    [Google Scholar]
  39. Sage, A. E., Vasil, A. I. & Vasil, M. L. ( 1997; ). Molecular characterisation of mutants affected in the osmoprotectant-dependent induction of phospholipase C in Pseudomonas aeruginosa PAO1. Mol Microbiol 23, 43-56.[CrossRef]
    [Google Scholar]
  40. Singer, M., Baker, T. A., Schnitzler, G. & 7 other authors ( 1989; ). A collection of strains containing genetically linked alternating antibiotic resistance elements for genetic mapping of Escherichia coli. Microbiol Rev 53, 1–24.
    [Google Scholar]
  41. Sprinzl, M., Steegborg, C., Hubel, F. & Steinberg, S. ( 1996; ). Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res 24, 68-72.[CrossRef]
    [Google Scholar]
  42. Stokes, N. R. (2000). Analysis of the function and regulation of mechanosensitive channels in bacteria. PhD Thesis, University of Aberdeen.
  43. Tötemeyer, S., Booth, N. A., Nichols, W. W., Dunbar, B. & Booth, I. R. ( 1998; ). From famine to feast: the role of methylglyoxal production in Escherichia coli. Mol Microbiol 27, 553-562.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-11-3511
Loading
/content/journal/micro/10.1099/00221287-148-11-3511
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error