1887

Abstract

Gene encodes peptidyl-tRNA hydrolase (Pth), an enzyme that cleaves peptidyl-tRNAs released abortively from ribosomes during protein synthesis. In the chromosome, is flanked by and , two genes of unknown function. Pth is essential for cell viability, especially under conditions leading to overproduction of peptidyl-tRNA. In an attempt to unveil the elements that affect expression, the transcriptional features of the region were investigated. Northern blot experiments showed that both and , the 3′-proximal gene, are cotranscribed in a bicistronic transcript. However, transcripts containing each of the individual messages were also detected. Accordingly, two transcriptional promoters were identified by primer extension experiments: one located upstream of , which presumably gives rise to both the mono and bicistronic transcripts, and the other, preceding , which generates its monocistronic message. Deletion analysis indicates that transcript stability depends on integrity. Also, a defect in RNase E activity resulted in Pth overproduction. It is proposed that RNase E processing within F in the bicistronic message limits expression.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-11-3457
2002-11-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/11/1483457a.html?itemId=/content/journal/micro/10.1099/00221287-148-11-3457&mimeType=html&fmt=ahah

References

  1. Aiba, H., Adhya, S. & de Crombrugghe, B. ( 1981; ). Evidence for two functional gal promoters in intact Escherichia coli cells. J Biol Chem 256, 11905-11910.
    [Google Scholar]
  2. Artsimovitch, I., Kahmeyer-Gabbe, M. & Howe, M. M. ( 1996; ). Distortion in the spacer region of Pm during activation of middle transcription of phage Mu. Proc Natl Acad Sci USA 93, 9408-9413.[CrossRef]
    [Google Scholar]
  3. Atherly, A. G. & Menninger, J. R. ( 1972; ). Mutant E. coli strain with temperature sensitive peptidyl-transfer RNA hydrolase. Nature 240, 245-246.[CrossRef]
    [Google Scholar]
  4. Auble, D. T. & deHaseth, P. L. ( 1988; ). Promoter recognition by Escherichia coli RNA polymerase. Influence of DNA structure in the spacer separating the −10 and −35 regions. J Mol Biol 202, 471-482.[CrossRef]
    [Google Scholar]
  5. Bardwell, J. C., Régnier, P., Chen, S. M., Nakamura, Y., Grunberg-Manago, M. & Court, D. L. ( 1989; ). Autoregulation of RNase III operon by mRNA processing. EMBO J 8, 3401-3407.
    [Google Scholar]
  6. Cruz-Vera, L. R., Toledo, I., Hernández-Sánchez, J. & Guarneros, G. ( 2000; ). Molecular basis for the temperature sensivity of Escherichia coli pth(Ts). J Bacteriol 182, 1523-1528.[CrossRef]
    [Google Scholar]
  7. De la Vega, F. M., Galindo, J. M., Gold, I. G. & Guarneros, G. ( 1996; ). Microbial genes homologous to the peptidyl-tRNA hydrolase-encoding gene of Escherichia coli. Gene 169, 97-100.[CrossRef]
    [Google Scholar]
  8. Dinçbas, V., Heurgué-Hamard, V., Buckingham, R. H., Karimi, R. & Ehrenberg, M. ( 1999; ). Shutdown in protein synthesis due to the expression of mini-genes in bacteria. J Mol Biol 291, 745-759.[CrossRef]
    [Google Scholar]
  9. Dutka, S., Meinnel, T., Lazennec, C., Mechulam, Y. & Blanquet, S. ( 1993; ). Role of the 1–72 base pair in tRNAs for the activity of Escherichia coli peptidyl-tRNA hydrolase. Nucleic Acids Res 21, 4025-4030.[CrossRef]
    [Google Scholar]
  10. Fleischmann, R. D., Adams, M. D., White, O. & 37 other authors ( 1995; ). Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269, 496–512.[CrossRef]
    [Google Scholar]
  11. Fromant, M., Plateau, P., Schmitt, E., Mechulam, Y. & Blanquet, S. ( 1999; ). Receptor site for the 5′-phosphate of elongator tRNAs governs substrate selection by peptidyl-tRNA hydrolase. Biochemistry 38, 4982-4987.[CrossRef]
    [Google Scholar]
  12. Galindo, J. M., Guarneros, G. & De La Vega, F. M. ( 1994; ). Open reading frames flanking the peptidyl-tRNA hydrolase-encoding gene of Escherichia coli. Gene 151, 153-156.[CrossRef]
    [Google Scholar]
  13. Garcı́a-Mena, J., Das, A., Sánchez-Trujillo, A., Portier, C. & Montañez, C. ( 1999; ). A novel mutation in the KH domain of polynucleotide phosphorylase affects autoregulation and mRNA decay in Escherichia coli. Mol Microbiol 33, 235-248.[CrossRef]
    [Google Scholar]
  14. Garcı́a-Villegas, R., De La Vega, F. M., Galindo, J. M., Segura, M., Buckingham, R. H. & Guarneros, G. ( 1991; ). Peptidyl-tRNA hydrolase is involved in λ inhibition of host protein synthesis. EMBO J 10, 3549-3555.
    [Google Scholar]
  15. Guzmán, G. & Guarneros, G. ( 1989; ). Phage genetic sites involved in lambda growth inhibition by Escherichia coli rap mutants. Genetics 21, 401-409.
    [Google Scholar]
  16. Hajnsdorf, E., Carpousis, A. J. & Régnier, P. ( 1994; ). Nucleolytic inactivation and degradation of RNAse III processed pnp message encoding polynucleotide phosphorylase of Escherichia coli. J Mol Biol 239, 439-454.[CrossRef]
    [Google Scholar]
  17. Hawley, D. K. & McClure, W. R. ( 1983; ). Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Res 11, 2237-2255.[CrossRef]
    [Google Scholar]
  18. Hernández, J., Ontiveros, C., Valadez, J. G., Buckingham, R. H. & Guarneros, G. ( 1997; ). Regulation of protein synthesis by minigene expression. Biochimie 79, 527-531.[CrossRef]
    [Google Scholar]
  19. Hernández-Sánchez, J., Valadez, J. G., Vega-Herrera, J., Ontiveros, C. & Guarneros, G. ( 1998; ). Lambda bar minigene-mediated inhibition of protein synthesis involves accumulation of peptidyl-tRNA and starvation for tRNA. EMBO J 17, 3758-3765.[CrossRef]
    [Google Scholar]
  20. Heurgué-Hamard, V., Karimi, R., Mora, L., MacDougall, J., Leboeuf, C., Grentzmann, G., Ehrenberg, M. & Buckingham, R. H. ( 1998; ). Ribosome release factor RF4 and termination factor RF3 are involved in dissociation of peptidyl-tRNA from the ribosome. EMBO J 17, 808-816.[CrossRef]
    [Google Scholar]
  21. Heurgué-Hamard, V., Dinçbas, V., Buckingham, R. H. & Ehrenberg, M. ( 2000; ). Origins of minigene-dependent growth inhibition in bacterial cells. EMBO J 19, 2701-2709.[CrossRef]
    [Google Scholar]
  22. Higgins, C. F., Causton, H. C., Dance, G. S. C. & Mudd, H. A. ( 1993; ). RNA degradation. In Control of Messenger RNA Stability , pp. 13-30. Edited by J. Belasco & G. Brawerman. San Diego, CA:Academic Press.
  23. Jain, C. & Belasco, J. G. ( 1995; ). RNase E autoregulates its synthesis by controlling the degradation rate of its own mRNA in Escherichia coli: unusual sensitivity of the rne transcript to RNase E activity. Genes Dev 9, 84-96.[CrossRef]
    [Google Scholar]
  24. Kohara, Y., Akiyama, K. & Isono, K. ( 1987; ). The physical map of the whole E. coli chromosome; application of a new strategy for rapid analysis and sorting of large genomic library. Cell 50, 495-508.[CrossRef]
    [Google Scholar]
  25. Lesnik, E. A., Sampath, R., Levene, H. B., Henderson, T. J., McNeil, J. A. & Ecker, D. J. ( 2001; ). Prediction of rho-independent transcriptional terminators in Escherichia coli. Nucleic Acids Res 29, 3583-3594.[CrossRef]
    [Google Scholar]
  26. Manson, P. J. & Williams, J. G. ( 1985; ). Hybridisation in the analysis of recombination DNA. In Nucleic Acid Hybridisation, a Practical Approach , pp. 213-276. Edited by B. D. Hames & S. J. Higgins. Oxford:IRL Press.
  27. Mateos, L. M., Pisabarro, A., Pátek, M., Malumbres, M., Guerrero, C., Eikmanns, B. J., Sahm, H. & Martı́n, J. F. ( 1994; ). Transcriptional analysis and regulatory signals of the hom–thrB cluster of Brevibacterium lactofermentum. J Bacteriol 176, 7362-7371.
    [Google Scholar]
  28. McClelland, M., Sanderson, K. E., Spieth, J.& 23 other authors ( 2001; ). Complete genome sequence of Salmonella enterica serovar typhimurium LT2. Nature 413, 852–856.[CrossRef]
    [Google Scholar]
  29. McDowall, K. J., Hernández, R. G., Lin-Chao, S. & Cohen, S. N. ( 1993; ). The ams-1 and rne-3071 temperature-sensitive mutations in the ams gene are in close proximity to each other and cause substitutions within a domain that resembles a product of the Escherichia coli mre locus. J Bacteriol 175, 4245-4249.
    [Google Scholar]
  30. Menez, J., Heurgué-Hamard, V. & Buckingham, R. H. ( 2000; ). Sequestration of specific tRNA species cognate to the last sense codon of an overproduced gratuitous protein. Nucleic Acids Res 28, 4725-4732.[CrossRef]
    [Google Scholar]
  31. Nickerson, C. A. & Achberger, E. C. ( 1995; ). Role of curved DNA in binding of Escherichia coli RNA polymerase to promoters. J Bacteriol 177, 5756-5761.
    [Google Scholar]
  32. Ontiveros, C., Valadez, J. G., Hernández, J. & Guarneros, G. ( 1997; ). Inhibition of Escherichia coli protein synthesis by abortive translation of phage lambda minigenes. J Mol Biol 269, 167-175.[CrossRef]
    [Google Scholar]
  33. Oshima, T., Aiba, H., Baba, T. & 52 other authors ( 1996; ). A 718-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 12·7–28·0 min region on the linkage map. DNA Res 3, 137–155.[CrossRef]
    [Google Scholar]
  34. Parkhill, J., Wren, B. W., Thomson, N. R. & 38 other authors ( 2001; ). Genome sequence of Yersinia pestis, the causative agent of plague. Nature 413, 469–470.[CrossRef]
    [Google Scholar]
  35. Régnier, P. & Portier, C. ( 1986; ). Initiation, attenuation and RNase III processing of transcripts from the Escherichia coli operon encoding ribosomal protein S15 and polynucleotide phosphorylase. J Mol Biol 187, 23-32.[CrossRef]
    [Google Scholar]
  36. Rudd, K. E. (1992). Alignment of E. coli DNA sequences to a revised, integrated genomic restriction map. In A Short Course in Bacterial Genetics: a Laboratory Manual and Handbook for E. coli and Related Bacteria, pp. 2.3–2.43. Edited by J. H. Miller. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  37. Schmitt, E., Mechulam, Y., Fromant, M., Plateau, P. & Blanquet, S. ( 1997; ). Crystal structure at 1·2 Å resolution and active site mapping of Escherichia coli peptidyl-tRNA hydrolase. EMBO J 16, 4760-4769.[CrossRef]
    [Google Scholar]
  38. Stover, C. K., Pham, X. Q., Erwin, A. L. & 28 other authors ( 2000; ). Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406, 959–964.[CrossRef]
    [Google Scholar]
  39. Wosten, M. M. ( 1998; ). Eubacterial sigma-factors. FEMS Microbiol Rev 22, 127-150.[CrossRef]
    [Google Scholar]
  40. Zilhao, R., Régnier, P. & Arraiano, C. M. ( 1995; ). The role of endonucleases in the expression of ribonuclease II in Escherichia coli. FEMS Microbiol Lett 130, 237-244.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-11-3457
Loading
/content/journal/micro/10.1099/00221287-148-11-3457
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error