1887
Preview this article:
Zoom in
Zoomout

Mycobacteria research in the post-genomic era, Page 1 of 1

| /docserver/preview/fulltext/micro/148/10/1482915a-1.gif

There is no abstract available for this article.
Use the preview function to the left.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-10-2915
2002-10-01
2020-01-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/10/1482915a.html?itemId=/content/journal/micro/10.1099/00221287-148-10-2915&mimeType=html&fmt=ahah

References

  1. Astola J., Muñoz M., Sempere M., Coll P., Luquin M., Valero-Guillen P. L. 2002; The HPLC-double-cluster pattern of some Mycobacterium gordonae strains is due to their dicarboxy-mycolate content. Microbiology148:3119–3127
    [Google Scholar]
  2. Bardarov S., Bardarov S. Jr, Pavelka M. S. Jr, Sambandamurthy V., Larsen M., Tufariello J., Chan J., Hatfull G., Jacobs W. Jr. 2002; Specialized transduction: an efficient method for generating marked and unmarked targeted gene disruptions in Mycobacterium tuberculosis , M. bovis BCG and. M. smegmatis . Microbiology148:3007–3017
    [Google Scholar]
  3. Brandt L., Feino Cunha J., Weinreich Olsen A., Chilima B., Hirsch P., Appelberg R., Andersen P. 2002; Failure of the Mycobacterium bovis BCG vaccine: some species of environmental mycobacteria block multiplication of BCG and induction of protective immunity to tuberculosis. Infect Immun70:672–678[CrossRef]
    [Google Scholar]
  4. Camus J.-C., Pryor M. J., Médigue C., Cole S. T. 2002; Re-annotation of the genome sequence of Mycobacterium tuberculosis H37Rv. Microbiology148:2967–2973
    [Google Scholar]
  5. Cole S. T. 2002; Comparative and functional genomics of the Mycobacterium tuberculosis complex. Microbiology148:2919–2928
    [Google Scholar]
  6. Collins D. M., Wilson T., Campbell S., Buddle B. M., Wards B. J., Hotter G., de Lisle G. W. 2002; Production of avirulent mutants of Mycobacterium bovis with vaccine properties by the use of illegitimate recombination and screening of stationary- phase cultures. Microbiology148:3019–3027
    [Google Scholar]
  7. DesJardin L. E., Kaufman T. M., Potts B., Kutzbach B., Yi H., Schlesinger L. S. 2002; Mycobacterium tuberculosis -infected human macrophages exhibit enhanced cellular adhesion with increased expression of LFA-1 and ICAM-1 and reduced expression and/or function of complement receptors, FcγRII and the mannose receptor. Microbiology148:3161–3171
    [Google Scholar]
  8. Douglas J. D., Senior S. J., Morehouse C., Phetsukiri B., Campbell I. B., Besra G. S., Minnikin D. E. 2002; Analogues of thiolactomycin: potential drugs with enhanced anti-mycobacterial activity. Microbiology148:3101–3109
    [Google Scholar]
  9. Dullaghan E. M., Malloff C. A., Li A. H., Lam W. L., Stokes R. W. 2002; Two-dimensional bacterial genome display: a method for the genomic analysis of mycobacteria. Microbiology148:3111–3117
    [Google Scholar]
  10. Etienne G., Villeneuve C., Billman-Jacobe H., Astarie-Dequeker C., Dupont M.-A., Daffé M. 2002; The impact of the absence of glycopeptidolipids on the ultrastructure, cell surface and cell wall properties, and phagocytosis of Mycobacterium smegmatis . Microbiology148:3089–3100
    [Google Scholar]
  11. Fattorini L., Nisini R., Fan Y., Li Y.-J., Tan D., Mariotti S., Teloni R., Iona E., Orefici G. 2002; Exposure of BALB/c mice to low doses of Mycobacterium avium increases resistance to a subsequent high-dose infection. Microbiology148:3173–3181
    [Google Scholar]
  12. Garton N. J., Christensen H., Minnikin D. E., Agedbola R. A., Barer M. R. 2002; Intracellular lipophilic inclusions of mycobacteria in vitro and in sputum. Microbiology148:2951–2958
    [Google Scholar]
  13. Gomes M. S., Appelberg R. 2002; NRAMP1- or cytokine-induced bacteriostasis of Mycobacterium avium by mouse macrophages is independent of the respiratory burst. Microbiology148:3155–3160
    [Google Scholar]
  14. Gruppo V., Turner O. C., Orme I. M., Turner J. 2002; Reduced up-regulation of memory and adhesion/integrin molecules in susceptible mice and poor expression of immunity to pulmonary tuberculosis. Microbiology148:2959–2966
    [Google Scholar]
  15. Hancock I. C., Carman S., Besra G. S., Brennan P. J., Waite E. 2002; Ligation of arabinogalactan to peptidoglycan in the cell wall of Mycobacterium smegmatis requires concomitant synthesis of the two wall polymers. Microbiology148:3059–3067
    [Google Scholar]
  16. Howard S. T., Byrd T. F., Lyons C. R. 2002; A polymorphic region in Mycobacterium abscessus contains a novel insertion sequence element. Microbiology148:2987–2996
    [Google Scholar]
  17. Jeevarajah D., Patterson J. H., McConville M. J., Billman-Jacobe H. 2002; Modification of glycopeptidolipids by an O -methyltransferase of Mycobacterium smegmatis . Microbiology148:3079–3087
    [Google Scholar]
  18. Kaur D., Lowary T. L., Vissa V. D., Crick D. C., Brennan P. J. 2002; Characterization of the epitope of anti-lipoarabinomannan antibodies as the terminal hexaarabinofuranosyl motif of mycobacterial arabinans. Microbiology148:3049–3057
    [Google Scholar]
  19. Kremer L., Guérardel Y., Gurcha S. S., Locht C., Besra G. S. 2002; Temperature-induced changes in the cell-wall components of Mycobacterium thermoresistibile . Microbiology148:3145–3154
    [Google Scholar]
  20. Lockwood D. N. J. 2002; Leprosy elimination – a virtual phenomenon or a reality?. BMJ324:1516–1518[CrossRef]
    [Google Scholar]
  21. Ludwiczak P., Gilleron M., Bordas Y., Martin C., Gicquel B., Puzo G. 2002; Mycobacterium tuberculosis phoP mutant: lipoarabinomannan molecular structure. Microbiology148:3029–3037
    [Google Scholar]
  22. Master S. S., Springer B., Sander P., Boettger E. C., Deretic V., Timmins G. S. 2002; Oxidative stress response genes in Mycobacterium tuberculosis : role of ahpC in resistance to peroxynitrite and stage-specific survival in macrophages. Microbiology148:3139–3144
    [Google Scholar]
  23. McAdam R. A., Quan S., Smith D. A.. 11 other authors 2002; Characterization of a Mycobacterium tuberculosis H37Rv transposon library reveals insertions in 351 ORFs and mutants with altered virulence. Microbiology148:2975–2986
    [Google Scholar]
  24. McKinney J. D., Honer zu Bentrup K., Munoz-Elias E. J.. 7 other authors 2000; Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature406:735–738[CrossRef]
    [Google Scholar]
  25. McLean K. J., Marshall K. R., Richmond A., Hunter I. S., Fowler K., Kieser T., Gurcha S. S., Besra G. S., Munro A. W. 2002; Azole antifungals are potent inhibitors of cytochrome P450 mono-oxygenases and bacterial growth in mycobacteria and streptomycetes. Microbiology148:2937–2949
    [Google Scholar]
  26. Ojha A. Kr., Varma S., Chatterji D. 2002; Synthesis of an unusual polar glycopeptidolipid in glucose-limited culture of Mycobacterium smegmatis . Microbiology148:3039–3048
    [Google Scholar]
  27. Parish T., Stoker N. G. 2002; The common aromatic amino acid biosynthesis pathway is essential in Mycobacterium tuberculosis . Microbiology148:3069–3077
    [Google Scholar]
  28. Perez E., Samper S., Bordas Y., Guilhot C., Gicquel B., Martin C. 2001; An essential role for phoP in Mycobacterium tuberculosis virulence. Mol Microbiol41:179–187[CrossRef]
    [Google Scholar]
  29. Santangelo M. P., Goldstein J., Alito A.. 7 other authors 2002; Negative transcriptional regulation of the mce3 operon in Mycobacterium tuberculosis . Microbiology148:2997–3006
    [Google Scholar]
  30. Stewart G. R., Snewin V. A., Walzl G.. 7 other authors 2001; Overexpression of heat shock proteins reduces survival of Mycobacterium tuberculosis in the chronic phase of infection. Nat Med7:732–737[CrossRef]
    [Google Scholar]
  31. Stewart G. R., Wernisch L., Stabler R., Mangan J. A., Hinds J., Laing K. G., Young D. B., Butcher P. D. 2002; Dissection of the heat-shock response in Mycobacterium tuberculosis using mutants and microarrays. Microbiology148:3129–3138
    [Google Scholar]
  32. Turner D. J., Hoyle S. L., Snewin V. A., Gares M.-P., Brown I. N., Young D. B. 2002; An ex vivo culture model for screening drug activity against in vivo phenotypes of Mycobacterium tuberculosis . Microbiology148:2929–2936
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-10-2915
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error