1887
Preview this article:
Zoom in
Zoomout

Immigration control of DNA in bacteria: self versus non-self, Page 1 of 1

| /docserver/preview/fulltext/micro/148/1/1480003a-1.gif

There is no abstract available for this article.
Use the preview function to the left.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-1-3
2002-01-01
2020-07-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/1/1480003a.html?itemId=/content/journal/micro/10.1099/00221287-148-1-3&mimeType=html&fmt=ahah

References

  1. Abadjieva A., Patel J., Webb M., Zinkevich V., Firman K.. 1993; A deletion mutant of the type IC restriction endonuclease Eco R1241 expressing a novel DNA specificity. Nucleic Acids Res21:4435–4443[CrossRef]
    [Google Scholar]
  2. Atanasiu C., Byron O., McMiken H., Sturrock S. S., Dryden D. T. F.. 2001; Characterisation of the structure of ocr, the gene 0.3 protein of bacteriophage T7. Nucleic Acids Res29:3059–3068[CrossRef]
    [Google Scholar]
  3. Arber W.. 2000; Genetic variation: molecular mechanisms and impact on microbial evolution. FEMS Microbiol Rev24:1–7[CrossRef]
    [Google Scholar]
  4. Arber W., Dussoix D.. 1962; Host specificity of DNA produced by Escherichia coli . I. Host controlled modification of bacteriophage lambda. J Mol Biol5:18–36[CrossRef]
    [Google Scholar]
  5. Arber W., Morse M. L.. 1965; Host specificity of DNA produced by Escherichia coli . VI. Effects on bacterial conjugation. Genetics51:137–148
    [Google Scholar]
  6. Bandyopadhyay P. K., Studier F. W., Hamilton D. L., Yuan R.. 1985; Inhibition of the type I restriction-modification enzymes Eco B and Eco K by the gene 0.3 protein of bacteriophage T7. J Mol Biol182:567–578[CrossRef]
    [Google Scholar]
  7. Barcus V. A., Murray N. E.. 1995; Barriers to recombination: restriction. In Population Genetics of BacteriaSociety for General Microbiology symposium no. 52 pp31–58 Edited by Baumberg S.. Young J. P. W., Wellington E. M. H., Saunders J. R.. Cambridge: Cambridge University Press;
    [Google Scholar]
  8. Barcus V. A., Titheradge A. J., Murray N. E.. 1995; The diversity of alleles at the hsd locus in natural populations of Escherichia coli. . Genetics140:1187–1197
    [Google Scholar]
  9. Bates S., Roscoe R. A., Althorpe N. J., Brammar W. J., Wilkins B. M.. 1999; Expression of leading region genes on IncI1 plasmid ColIb-P9: genetic evidence for single-stranded DNA transcription. Microbiology145:2655–2662
    [Google Scholar]
  10. Belogurov A. A., Delver E. P.. 1995; A motif conserved among the type I restriction-modification enzymes and antirestriction proteins: a possible basis for mechanism of action of plasmid-encoded antirestriction functions. Nucleic Acids Res23:785–787[CrossRef]
    [Google Scholar]
  11. Bertani G., Weigle J. J.. 1953; Host controlled variation in bacterial viruses. J Bacteriol65:113–121
    [Google Scholar]
  12. Biaudet V., El Karoui M., Gruss A.. 1998; Codon usage can explain GT-rich islands surrounding Chi sites on the Escherichia coli genome. Mol Microbiol29:666–669[CrossRef]
    [Google Scholar]
  13. Bickle T. A.. others 1987; Restriction and modification systems. In Escherichia coli and Salmonella , 1st edn. pp692–696 Edited by Neidhardt F. C.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  14. Bickle T. A., Krüger D. H.. 1993; Biology of DNA restriction. Microbiol Rev57:434–450
    [Google Scholar]
  15. Blattner F. R., Bloch C., Plunkett G. III. A & 14 other authors 1997; The complete genome sequence of Escherichia coli K-12. Science277:1453–1474[CrossRef]
    [Google Scholar]
  16. Boyer H.. 1964; Genetic control of restriction and modification in Escherichia coli . J Bacteriol88:1652–1660
    [Google Scholar]
  17. Boyer H. W., Roulland-Dussoix D.. 1969; A complementation analysis of the restriction and modification of DNA in Escherichia coli . J Mol Biol41:459–472[CrossRef]
    [Google Scholar]
  18. Brammar W. J., Murray N. E., Winton S.. 1974; Restriction of λ trp bacteriophages by Escherichia coli K. J Mol Biol90:633–647[CrossRef]
    [Google Scholar]
  19. Bullas L. R., Colson C., Van Pel A.. 1976; DNA restriction and modification systems in Salmonella : SQ, a new system derived by recombination between the SB system of Salmonella typhimurium and the SP system of Salmonella potsdam . J Gen Microbiol95:166–172[CrossRef]
    [Google Scholar]
  20. Bullas L. R., Colson C., Neufeld B.. 1980; Deoxyribonucleic acid restriction and modification systems in Salmonella : chromosomally located systems of different serotypes. J Bacteriol141:275–292
    [Google Scholar]
  21. Burland V., Plunkett G.III., Daniels D. L., Blattner F. R.. 1993; DNA sequence and analysis of 136 kilobases of the Escherichia coli genome: organizational symmetry around the origin of replication. Genomics16:551–561[CrossRef]
    [Google Scholar]
  22. Chang A. C. Y., Cohen S. N.. 1977; In vivo site-specific genetic recombination promoted by the Eco RI restriction endonuclease. Proc Natl Acad Sci USA74:4811–4815[CrossRef]
    [Google Scholar]
  23. Chedin F., Ehrlich S. D., Kowalczykowski S. C.. 2000; The Bacillus subtilis AddAB helicase/nuclease is regulated by its cognate Chi sequence in vitro . J Mol Biol298:7–20[CrossRef]
    [Google Scholar]
  24. Colbert T., Taylor A. F., Smith G. R.. 1998; Genomics, Chi sites and codons: islands of preferred DNA pairing are oceans of ORFs. Trends Genet14:485–488[CrossRef]
    [Google Scholar]
  25. Cowan G. M., Gann A. A., Murray N. E.. 1989; Conservation of complex DNA recognition domains between families of restriction enzymes. Cell56:103–109[CrossRef]
    [Google Scholar]
  26. Cromie G. A., Leach D. R.. 2001; Recombination repair of chromosomal DNA double-strand breaks generated by a restriction endonuclease. Mol Microbiol41:873–884
    [Google Scholar]
  27. Dabert P., Ehrlich S. D., Gruss A.. 1992; χ sequence protects against RecBCD degradation of DNA in vivo . Proc Natl Acad Sci USA89:12073–12077[CrossRef]
    [Google Scholar]
  28. Davies G. P., Powell L. M., Webb J. L., Cooper L. P., Murray N. E.. 1998; Eco KI with an amino acid substitution in any one of seven DEAD-box motifs has impaired ATPase and endonuclease activities. Nucleic Acids Res26:4828–4836[CrossRef]
    [Google Scholar]
  29. Davies G. P., Kemp P., Molineux I. J., Murray N. E.. 1999a; The DNA translocation and ATPase activities of restriction-deficient mutants of Eco KI. J Mol Biol292:787–796[CrossRef]
    [Google Scholar]
  30. Davies G. P., Martin L., Sturrock S. S., Cronshaw A., Murray N. E., Dryden D. T.. 1999b; On the structure and operation of type I DNA restriction enzymes. J Mol Biol290:565–579[CrossRef]
    [Google Scholar]
  31. Davison J., Brunel F.. 1979; Restriction insensitivity in bacteriophage T5. I. Genetic characterization of mutants sensitive to Eco RI restriction. J Virol29:11–16
    [Google Scholar]
  32. Dixon D. A., Kowalczykowski S. C.. 1993; The recombination hotspot χ is a regulatory sequence that acts by attenuating the nuclease activity of the E. coli RecBCD enzyme. Cell73:87–96[CrossRef]
    [Google Scholar]
  33. Dorner L. F., Bitinaite J., Whitaker R. D., Schildkraut I.. 1999; Genetic analysis of the base-specific contacts of Bam HI restriction endonuclease. J Mol Biol285:1515–1523[CrossRef]
    [Google Scholar]
  34. Doronina V. A., Murray N. E.. 2001; The proteolytic control of restriction activity in Escherichia coli K-12. Mol Microbiol39:416–428[CrossRef]
    [Google Scholar]
  35. Dreier J., MacWilliams M. P., Bickle T. A.. 1996; DNA cleavage by the type IC restriction-modification enzyme Eco R124II. J Mol Biol264:722–733[CrossRef]
    [Google Scholar]
  36. Dryden D. T. F.. 1999; Bacterial DNA methyltransferases. In S-adenosylmethionine-Dependent Methyltransferases: Structure and Function pp283–340 Edited by Cheng X.. Blumenthal R. M.. River Edge, NJ: World Scientific Publishing;
    [Google Scholar]
  37. Dryden D. T. F., Murray N. E., Rao D. N.. 2001; Nucleoside triphosphate-dependent restriction enzymes. Nucleic Acids Res29:3728–3741[CrossRef]
    [Google Scholar]
  38. Dybvig K., Sitaraman R., French C. T.. 1998; A family of phase-variable restriction enzymes with differing specificities generated by high-frequency gene rearrangements. Proc Natl Acad Sci USA95:13923–13928[CrossRef]
    [Google Scholar]
  39. Eddy S. R., Gold L.. 1992; The DNA restriction endonuclease of Escherichia coli B. J Biol Chem260:5729–5738
    [Google Scholar]
  40. Efimova E. P., Delver E. P., Belogurov A. A.. 1988a; Alleviation of type I restriction in adenine methylase ( dam ) mutants of Escherichia coli . Mol Gen Genet214:313–316[CrossRef]
    [Google Scholar]
  41. Efimova E. P., Delver E. P., Belogurov A. A.. 1988b; 2-Aminopurine and 5-bromouracil induce alleviation of type I restriction in Escherichia coli : mismatches function as inducing signals?. Mol Gen Genet214:317–320[CrossRef]
    [Google Scholar]
  42. Fuller-Pace F. V., Bullas L. R., Delius H., Murray N. E.. 1984; Genetic recombination can generate altered restriction specificity. Proc Natl Acad Sci USA81:6095–6099[CrossRef]
    [Google Scholar]
  43. Gann A. A., Campbell A. J., Collins J. F., Coulson A. F., Murray N. E.. 1987; Reassortment of DNA recognition domains and the evolution of new specificities. Mol Microbiol1:13–22[CrossRef]
    [Google Scholar]
  44. Garcia L. R., Molineux I. J.. 1999; Translocation and specific cleavage of bacteriophage T7 DNA in vivo by Eco KI. Proc Natl Acad Sci USA96:12430–12435[CrossRef]
    [Google Scholar]
  45. Glover S. W., Colson S.. 1965; The breakdown of the restriction mechanism in zygotes of Escherichia coli . Genet Res6:153–155[CrossRef]
    [Google Scholar]
  46. Glover S. W., Firman K., Watson G., Price C.. 1983; The alternative expression of two restriction and modification systems. Mol Gen Genetics190:65–69[CrossRef]
    [Google Scholar]
  47. Gorbalenya A. E., Koonin E. V.. 1991; Endonuclease (R) subunits of type-I and type-III restriction-modification enzymes contain a helicase-like domain. FEBS Lett291:277–281[CrossRef]
    [Google Scholar]
  48. Gottesman S.. 1999; Regulation by proteolysis: developmental switches. Curr Opin Microbiol2:142–147[CrossRef]
    [Google Scholar]
  49. Gough J. A., Murray N. E.. 1983; Sequence diversity among related genes for recognition of specific targets in DNA molecules. J Mol Biol166:1–19[CrossRef]
    [Google Scholar]
  50. Gubler M., Braguglia D., Meyer J., Piekarowicz A., Bickle T. A.. 1992; Recombination of constant and variable modules alters DNA sequence recognition by type IC restriction-modification enzymes. EMBO J11:233–240
    [Google Scholar]
  51. Hall M. C., Matson S. W.. 1999; Helicase motifs: the engine that powers DNA unwinding. Mol Microbiol34:867–877[CrossRef]
    [Google Scholar]
  52. Handa N., Ichige A., Kusano K., Kobayashi I.. 2000; Cellular responses to postsegrational killing by restriction-modification genes. J Bacteriol182:2218–2229[CrossRef]
    [Google Scholar]
  53. Ives C. L., Nathan P. D., Brooks J. E.. 1992; Regulation of the Bam HI restriction-modification system by a small intergenic open reading frame, bamHIC , in both Escherichia coli and Bacillus subtilis . J Bacteriol174:7194–7201
    [Google Scholar]
  54. Ives C. L., Sohail A., Brooks J. E.. 1995; The regulatory C proteins from different restriction-modification systems can cross-complement. J Bacteriol177:6313–6315
    [Google Scholar]
  55. Janscak P., MacWilliams M. P., Sandmeier U., Nagaraja V., Bickle T. A.. 1999a; DNA translocation blockage, a general mechanism of cleavage site selection by type I restriction enzymes. EMBO J18:2638–2647[CrossRef]
    [Google Scholar]
  56. Janscak P., Sandmeier U., Bickle T. A.. 1999b; Single amino acid substitutions in the HsdR subunit of the type IB restriction enzyme Eco AI uncouple the DNA translocation and DNA cleavage activities of the enzyme. Nucleic Acids Res27:2638–2643[CrossRef]
    [Google Scholar]
  57. Kannan P., Cowan G. M., Daniel A. S., Gann A. A., Murray N. E.. 1989; Conservation of organization in the specificity polypeptides of two families of type I restriction enzymes. J Mol Biol209:335–344[CrossRef]
    [Google Scholar]
  58. King G., Murray N. E.. 1994; Restriction enzymes in cells, not Eppendorfs. Trends Microbiol2:465–469[CrossRef]
    [Google Scholar]
  59. Kobayashi I.. 1998; Selfishness and death: raison d’etre of restriction, recombination and mitochondria. Trends Genet14:368–374[CrossRef]
    [Google Scholar]
  60. Kobayashi I.. 2001; Behaviour of restriction-modification systems as selfish mobile elements and its relationship with genome evolution. Nucleic Acids Res29:3742–3756[CrossRef]
    [Google Scholar]
  61. Kong H., Lin L.-F., Porter N., Stickel S., Byrd D., Posfai J., Roberts R. J.. 2000; Functional analysis of putative restriction-modification system genes in the Helicobacter pylori J99 genome. Nucleic Acids Res28:3216–3223[CrossRef]
    [Google Scholar]
  62. Köppen A., Krobitsch S., Thoms B., Wackernagel W.. 1995; Interaction with the recombination hot spot χ in vivo converts the RecBCD enzyme of Escherichia coli into a χ-independent recombinase by inactivation of the RecD subunit. Proc Natl Acad Sci USA92:6249–6253[CrossRef]
    [Google Scholar]
  63. Kowalczykowski S. C., Dixon D. A., Eggleston A. K., Lauder S. D., Rehrauer W. M.. 1994; Biochemistry of homologous recombination in Escherichia coli . Microbiol Rev58:401–465
    [Google Scholar]
  64. Kulik E. M., Bickle T. A.. 1996; Regulation of the activity of the type IC Eco R124I restriction enzyme. J Mol Biol264:891–906[CrossRef]
    [Google Scholar]
  65. Kuzminov A.. 1999; Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda. Microbiol Mol Biol Rev63:751–813
    [Google Scholar]
  66. Kuzminov A., Schabtach E., Stahl F. W.. 1994; χ sites in combination with RecA protein increase the survival of linear DNA in Escherichia coli by inactivating ExoV activity of RecBCD nuclease. EMBO J13:2764–2776
    [Google Scholar]
  67. Lanio T., Jeltsch A., Pingoud A.. 2000; On the possibilities and limitations of rational protein design to expand the specificity of restriction enzymes: a case study employing Eco RV as the target. Protein Enz13:275–281[CrossRef]
    [Google Scholar]
  68. Lautenberger J. A., Linn S.. 1972; The deoxyribonucleic acid modification and restriction enzymes of Escherichia coli B. I. Purification, subunit structure, and catalytic properties of the modification methylase. J Biol Chem247:6176–6182
    [Google Scholar]
  69. Linn S., Arber W.. 1968; Host specificity of DNA produced by Escherichia coli . X. In vitro restriction of phage fd replication form. Proc Natl Acad Sci USA59:1300[CrossRef]
    [Google Scholar]
  70. Loenen W. A., Daniel A. S., Braymer H. D., Murray N. E.. 1987; Organization and sequence of the hsd genes of Escherichia coli K-12. J Mol Biol198:159–170[CrossRef]
    [Google Scholar]
  71. McCorquodale J. D., Warner H. R.. 1988; Bacteriophage T5 and related phages. In The Bacteriophages pp439–476 Edited by Calendar R.. New York: Plenum;
    [Google Scholar]
  72. McKane M., Milkman R.. 1995; Transduction, restriction and recombination patterns in Escherichia coli . Genetics139:35–43
    [Google Scholar]
  73. Makovets S., Titheradge A. J. B., Murray N. E.. 1998; ClpX and ClpP are essential for the efficient acquisition of genes specifying type IA and IB restriction systems. Mol Microbiol28:25–35
    [Google Scholar]
  74. Makovets S., Doronina V. A., Murray N. E.. 1999; Regulation of endonuclease activity by proteolysis prevents breakage of unmodified bacterial chromosomes by type I restriction enzymes. Proc Natl Acad Sci USA96:9757–9762[CrossRef]
    [Google Scholar]
  75. Matic I., Taddei F., Radman M.. 1996; Genetic barriers among bacteria. Trends Microbiol4:69–72[CrossRef]
    [Google Scholar]
  76. Meisel A., Mackeldanz P., Bickle T. A., Schroeder C., Krüger D. V.. 1995; Type III restriction endonucleases translocate DNA in a reaction driven by recognition site-specific ATP hydrolysis. EMBO J14:2958–2966
    [Google Scholar]
  77. Meister J., MacWilliams M., Hubner P., Jutte H., Skrzypek E., Piekarowicz A., Bickle T. A.. 1993; Macroevolution by transposition: drastic modification of DNA recognition by a type I restriction enzyme following Tn 5 transposition. EMBO J12:4585–4591
    [Google Scholar]
  78. Meselson M., Yuan R.. 1968; DNA restriction enzyme from E. coli. . Nature 217:1110–1114[CrossRef]
    [Google Scholar]
  79. Milkman R., Raleigh E. A., McKane M., Cryderman D., Bilodeau P., McWeeny K.. 1999; Molecular evolution of the Escherichia coli chromosome. V. Recombination patterns among strains of diverse origin. Genetics153:539–554
    [Google Scholar]
  80. Murray N. E.. 2000; Type I restriction systems: sophisticated molecular machines (a legacy of Bertani and Weigle). Microbiol Mol Biol Rev64:412–434[CrossRef]
    [Google Scholar]
  81. Murray N. E., Gough J. A., Suri B., Bickle T. A.. 1982; Structural homologies among type I restriction–modification systems. EMBO J1:535–539
    [Google Scholar]
  82. Murray N. E., Daniel A. S., Cowan G. M., Sharp P. M.. 1993; Conservation of motifs within the unusually variable polypeptide sequences of type I restriction and modification enzymes. Mol Microbiol9:133–143[CrossRef]
    [Google Scholar]
  83. Myers R. S., Stahl F. W.. 1994; χ and the RecBCD enzyme of Escherichia coli . Annu Rev Genet28:49–70[CrossRef]
    [Google Scholar]
  84. Myers R. S., Kuzminov A., Stahl F. W.. 1995; The recombination hot spot χ activates RecBCD recombination by converting Escherichia coli to a recD mutant phenocopy. Proc Natl Acad Sci USA92:6244–6248[CrossRef]
    [Google Scholar]
  85. Nagaraja V., Shepherd J. C., Bickle T. A.. 1985; A hybrid recognition sequence in a recombinant restriction enzyme and the evolution of DNA sequence specificity. Nature316:371–372[CrossRef]
    [Google Scholar]
  86. Naito T., Kusano K., Kobayashi I.. 1995; Selfish behaviour of restriction-modification systems. Science267:897–899[CrossRef]
    [Google Scholar]
  87. O’Neill M., Chen A., Murray N. E.. 1997; The restriction-modification genes of Escherichia coli K-12 may not be selfish: they do not resist loss and are readily replaced by alleles conferring different specificities. Proc Natl Acad Sci USA94:14596–14601[CrossRef]
    [Google Scholar]
  88. O’Neill M., Powell L., Murray N. E.. 2001; Target recognition by Eco KI: the recognition domain is robust and restriction-deficiency commonly results from the proteolytic control of enzyme activity. J Mol Biol307:951–963[CrossRef]
    [Google Scholar]
  89. Perna N. T., Burland V., 25 other authors Plunkett G. III. 2001; Genome sequence of enterohaemorrhagic Escherichia coli O157 : H7. Nature409:529–533[CrossRef]
    [Google Scholar]
  90. Pilarski L. M., Egan J. B.. 1973; Role of DNA topology in transcription of coliphage λ in vivo : M DNA topology protects the template from exonuclease attack. J Mol Biol76:257–266[CrossRef]
    [Google Scholar]
  91. Pingoud A., Jeltsch A.. 2001; Structure and function of type II restriction endonucleases. Nucleic Acids Res29:3705–3727[CrossRef]
    [Google Scholar]
  92. Pittard J.. 1964; Effect of phage-controlled restriction on genetic linkage in bacterial crosses. J Bacteriol87:1256–1257
    [Google Scholar]
  93. Ponticelli A. S., Schultz D. W., Taylor A. F., Smith G. R.. 1985; Chi-dependent DNA strand cleavage by RecBC enzyme. Cell41:145–151[CrossRef]
    [Google Scholar]
  94. Powell L. M., Dryden D. T., Murray N. E.. 1998; Sequence-specific DNA binding by Eco KI, a type IA DNA restriction enzyme. J Mol Biol283:963–976[CrossRef]
    [Google Scholar]
  95. Prakash-Cheng A., Ryu J.. 1993; Delayed expression of in vivo restriction activity following conjugal transfer of Escherichia coli hsdK (restriction-modification) genes. J Bacteriol175:4905–4906
    [Google Scholar]
  96. Prakash-Cheng A., Chung S. S., Ryu J.. 1993; The expression and regulation of hsdK genes after conjugative transfer. Mol Gen Genet241:491–496
    [Google Scholar]
  97. Price C., Bickle T. A.. 1986; A possible role for DNA restriction in bacterial evolution. Microbiol Sci3:296–299
    [Google Scholar]
  98. Price C., Pripfl T., Bickle T. A.. 1987; Eco R124 and Eco R124/3: the first members of a new family of type I restriction and modification systems. Eur J Biochem167:111–115[CrossRef]
    [Google Scholar]
  99. Price C., Lingner J., Bickle T. A., Firman K., Glover S. W.. 1989; Basis for changes in DNA recognition by the Eco R124 and Eco R124/3 type I DNA restriction and modification enzymes. J Mol Biol205:115–125[CrossRef]
    [Google Scholar]
  100. Radding C. M.. 1973; Molecular mechanisms in genetic recombination. Annu Rev Genet7:87–111[CrossRef]
    [Google Scholar]
  101. Raleigh E. A.. 1992; Organization and function of the mcrBC genes of Escherichia coli K-12. Mol Microbiol6:1079–1086[CrossRef]
    [Google Scholar]
  102. Raleigh E. A., Brooks J. E.. 1998; Restriction–modification systems; where they are and what they do. In Bacterial Genomes: Physical Structure and Analysis pp78–92 Edited by de Bruijn F. J.. Lupski J. R., Weinstock G. M.. New York: Chapman & Hall;
    [Google Scholar]
  103. Rao D. N., Saga S., Krishnamurthy V.. 2000; The ATP-dependent restriction enzymes. Prog Nucleic Acids Res Mol Biol64:1–63
    [Google Scholar]
  104. Read T. D., Thomas A. T., Wilkins B. M.. 1992; Evasion of type I and type II DNA restriction systems by IncI1 plasmid ColIb-P9 during transfer by bacterial conjugation. Mol Microbiol6:1933–1941[CrossRef]
    [Google Scholar]
  105. Redaschi N., Bickle T. A.. 1996; DNA restriction and modification systems. In Escherichia coli and Salmonella: Cellular and Molecular Biology . , 2nd edn. pp773–781 Edited by Neidhardt F. C.. others Washington, DC: American Society for Microbiology;
  106. Roberts R. J., Halford S. E.. 1993; Type II endonucleases. In Nucleases pp35–88 Edited by Linn S. M.. Lloyd R. S., Roberts R. J.. Cold Spring Harbor, NY: Cold Spring Harbor Press;
    [Google Scholar]
  107. Roberts R. J., Macelis D.. 2000; REBASE – restriction enzymes and methylases. Nucleic Acids Res28:306–307[CrossRef]
    [Google Scholar]
  108. Salaj-Šmic E., Maršic N., Trgovcevic Z., Lloyd R. G.. 1997; Modulation of Eco KI restriction in vivo : role of the λGam protein and plasmic metabolism. J Bacteriol179:1852–1856
    [Google Scholar]
  109. Sharp P. M., Kelleher J. E., Daniel A. S., Cowan G. M., Murray N. E.. 1992; Roles of selection and recombination in the evolution of type I restriction-modification systems in enterobacteria. Proc Natl Acad Sci USA89:9836–9840[CrossRef]
    [Google Scholar]
  110. Simmon V. F., Lederberg S.. 1972; Degradation of bacteriophage lambda deoxyribonucleic acid after restriction by Escherichia coli K-12. J Bacteriol112:161–169
    [Google Scholar]
  111. Smith G. R.. 2001; Homologous recombination near and far from DNA breaks: alternative roles and contrasting views. Annu Rev Genetics35:243–274[CrossRef]
    [Google Scholar]
  112. Smith J. D., Arber W., Kuhnlein U.. 1972; Host specificity of DNA produced by Escherichia coli . XIV. The role of nucleotide methylation in in vivo B-specific modification. J Mol Biol63:1–8[CrossRef]
    [Google Scholar]
  113. Smith G. R., Amundsen S. K., Dabert P., Taylor A. F.. 1995; The initiation and control of homologous recombination in Escherichia coli . Philos Trans R Soc Lond B Biol Sci347:13–20[CrossRef]
    [Google Scholar]
  114. Stahl F. W., Stahl M. M., Malone R. E., Craseman J. M.. 1980; Directionality and nonreciprocality of Chi-stimulated recombination in phage lambda. Genetics94:235–248
    [Google Scholar]
  115. Stahl M. M., Kobayashi I., Stahl F. W., Huntingdon S. K.. 1983; Activation of Chi, a recombinator, by the action of endonuclease at a distant site. Proc Natl Acad Sci USA80:2310–2313[CrossRef]
    [Google Scholar]
  116. Studier F. W., Bandyopadhyay P. K.. 1988; Model for how type I restriction enzymes select cleavage sites in DNA. Proc Natl Acad Sci USA85:4677–4681[CrossRef]
    [Google Scholar]
  117. Suri B., Bickle T. A.. 1985; Eco A: the first member of a new family of type I restriction modification systems: gene organization and enzymic activities. J Mol Biol186:77–85[CrossRef]
    [Google Scholar]
  118. Szczelkun M. D.. 2000; How do proteins move along DNA? Lessons from type I and type III restriction endonucleases. In Essays in Biochemistry vol. 35 Edited by Banting G.. Higgins S. J.. London: Portland Press;
    [Google Scholar]
  119. Tao T., Blumenthal R. M.. 1992; Sequence and characterization of pvuIIR , the PvuII endonuclease gene, and of pvuIIC , its regulatory gene. J Bacteriol174:3395–3398
    [Google Scholar]
  120. Tao T., Bourne J. C., Blumenthal R. M.. 1991; A family of regulatory genes associated with type II restriction-modification systems. J Bacteriol173:1367–1375
    [Google Scholar]
  121. Taylor A. F., Smith G. R.. 1990; Action of RecBCD enzyme on cruciform DNA. J Mol Biol211:117–134[CrossRef]
    [Google Scholar]
  122. Taylor A. F., Smith G. R.. 1999; Regulation of homologous recombination: Chi inactivates RecBCD enzyme by disassembly of the three subunits. Genes Dev13:890–900[CrossRef]
    [Google Scholar]
  123. Taylor A. F., Schultz D. W., Ponticelli A. S., Smith G. R.. 1985; RecBC enzyme nicking at Chi sites during DNA unwinding: location and orientation dependence of cutting. Cell41:153–163[CrossRef]
    [Google Scholar]
  124. Taylor I., Patel J., Firman K., Kneale G.. 1992; Purification and biochemical characteristation of the Eco R124 type I modification methylase. Nucleic Acids Res20:179–186[CrossRef]
    [Google Scholar]
  125. Taylor I., Watts D., Kneale G.. 1993; Substrate recognition and selectivity in the type IC DNA modification methylase M Ec oR124I. Nucleic Acids Res21:4929–4935[CrossRef]
    [Google Scholar]
  126. Telander-Muskavitch K. M., Linn S.. 1981; RecBC-like enzymes: exonuclease V deoxyribonucleases. Enzymes14A:233–250
    [Google Scholar]
  127. Thaler D. S., Stahl M. M., Stahl F. W.. 1987; Tests of the double-strand-break repair model for Red-mediated recombination of phage λ and plasmid dv. Genetics116:501–511
    [Google Scholar]
  128. Thoms B., Wackernagel W.. 1984; Genetic control of damage-inducible restriction alleviation in Escherichia coli K12: an SOS function not repressed by lexA . Mol Gen Genet197:297–303[CrossRef]
    [Google Scholar]
  129. Thorpe P. H., Ternent D., Murray N. E.. 1997; The specificity of Sty SKI, a type I restriction enzyme, implies a structure with rotational symmetry. Nucleic Acids Res25:1694–1700[CrossRef]
    [Google Scholar]
  130. Titheradge A. J. B., Ternent D., Murray N. E.. 1996; A third family of allelic hsd genes in Salmonella enterica : sequence comparisons with related proteins identify conserved regions implicated in restriction of DNA. Mol Microbiol22:437–447[CrossRef]
    [Google Scholar]
  131. Titheradge A. J. B., King J., Ryu J., Murray N. E.. 2001; Families of restriction enzymes: an analysis prompted by molecular and genetic data for type ID restriction and modification systems. Nucleic Acids Res29:4195–4205[CrossRef]
    [Google Scholar]
  132. Tyndall C., Meister J., Bickle T. A.. 1994; The Escherichia coli prr region encodes a functional type IC DNA restriction system closely integrated with an anticodon nuclease gene. J Mol Biol237:266–274[CrossRef]
    [Google Scholar]
  133. Willcock D. F., Dryden D. T., Murray N. E.. 1994; A mutational analysis of the two motifs common to adenine methyltransferases. EMBO J13:3902–3908
    [Google Scholar]
  134. Wilson G. G., Murray N. E.. 1991; Restriction and modification systems. Annu Rev Genet25:585–627[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-1-3
Loading
/content/journal/micro/10.1099/00221287-148-1-3
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error