1887

Abstract

The design and evaluation of a set of universal primers and probe for the amplification of 16S rDNA from the Domain to estimate total bacterial load by real-time PCR is reported. Broad specificity of the universal detection system was confirmed by testing DNA isolated from 34 bacterial species encompassing most of the groups of bacteria outlined in . However, the nature of the chromosomal DNA used as a standard was critical. A DNA standard representing those bacteria most likely to predominate in a given habitat was important for a more accurate determination of total bacterial load due to variations in 16S rDNA copy number and the effect of generation time of the bacteria on this number, since rapid growth could result in multiple replication forks and hence, in effect, more than one copy of portions of the chromosome. The validity of applying these caveats to estimating bacterial load was confirmed by enumerating the number of bacteria in an artificial sample mixed and in clinical carious dentine samples. Taking these parameters into account, the number of anaerobic bacteria estimated by the universal probe and primers set in carious dentine was 40-fold greater than the total bacterial load detected by culture methods, demonstrating the utility of real-time PCR in the analysis of this environment.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-1-257
2002-01-01
2020-06-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/1/1480257a.html?itemId=/content/journal/micro/10.1099/00221287-148-1-257&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. 1990; Basic local alignment search tool. J Mol Biol215:403–410[CrossRef]
    [Google Scholar]
  2. Amann R. I., Ludwig W., Schleifer K.-H.. 1995; Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev59:143–169
    [Google Scholar]
  3. Attfield P., Gunasekera T., Boyd A., Deere D., Veal D.. 1999; Applications of flow cytometry to microbiology of food and beverage industries. Australas Biotechnol9:159–166
    [Google Scholar]
  4. Blok H. J., Gohlke A. M., Akkermans A. D.. 1997; Quantitative analysis of 16S rDNA using competitive PCR and the QPCR system 5000. Biotechniques22:700–704
    [Google Scholar]
  5. Bottger E. C.. 1990; Frequent contamination of Taq polymerase with DNA. Clin Chem36:1258–1259
    [Google Scholar]
  6. Corless C. E., Guiver M., Borrow R., Edwards-Jones V., Kaczmarski E. B., Fox A. J.. 2000; Contamination and sensitivity issues with a real-time universal 16S rRNA PCR. J Clin Microbiol38:1747–1752
    [Google Scholar]
  7. Dymock D., Weightman A. J., Scully C., Wade W. G.. 1996; Molecular analysis of microflora associated with dentoalveolar abscesses. J Clin Microbiol34:537–542
    [Google Scholar]
  8. Farelly V., Rainley F. A., Stackebrandt E.. 1995; Effect of genome size and rrn gene copy number on PCR amplification of 16S rRNA genes from a mixture of bacterial species. Appl Environ Microbiol61:2798–2801
    [Google Scholar]
  9. Gough J., Murray N.. 1983; Sequence diversity among related genes for recognition of specific targets in DNA molecules. J Mol Biol166:1–19[CrossRef]
    [Google Scholar]
  10. Greisen K., Loeffelholz M., Purohit A., Leong D.. 1994; PCR primers and probes for the 16S rRNA gene of most species of pathogenic bacteria, including bacteria found in cerebrospinal fluid. J Clin Microbiol32:335–351
    [Google Scholar]
  11. Gurtler V., Stanisich V. A.. 1996; New approaches to typing and identification of bacteria using 16S–23S rDNA spacer region. Microbiology142:3–16[CrossRef]
    [Google Scholar]
  12. Heid C. A., Stevens J., Livak K. J., Williams P. M.. 1996; Real time quantitative PCR. Genome Res6:986–994[CrossRef]
    [Google Scholar]
  13. Holt J. G., Krieg N. R., Sneath P. H. A., Staley J. T., Williams S. T.. 1994; Bergey’s Manual of Determinative Bacteriology , 9th edn. Baltimore: Williams & Wilkins;
    [Google Scholar]
  14. Hugenholtz P., Goebel B. M., Pace N. R.. 1998; Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol180:4765–4774
    [Google Scholar]
  15. Johnson M. J., Thatcher E., Cox M. E.. 1995; Techniques for controlling variability in Gram staining of obligate anaerobes. J Clin Microbiol33:755–758
    [Google Scholar]
  16. Klappenbach J. A., Dunbar J. M., Schmidt T. M.. 2000; rRNA operon copy number reflects ecological strategies of bacteria. Appl Environ Microbiol66:1328–1333[CrossRef]
    [Google Scholar]
  17. Klausegger A., Hell M., Berger A., Zinober K., Baier S., Jones N., Sperl W., Kofler B.. 1999; Gram type specific broad-range PCR amplification for rapid detection of 62 pathogenic bacteria. J Clin Microbiol37:464–466
    [Google Scholar]
  18. Kroes I., Lepp P. A., Relman D. A.. 1999; Bacterial diversity within the human subgingival crevice. Proc Natl Acad Sci USA96:14547–14552[CrossRef]
    [Google Scholar]
  19. Lyons S. R., Griffen A. N., Leys E. J.. 2000; Quantitative real-time PCR for Porphyromonas gingivalis and total bacteria. J Clin Microbiol38:2362–2365
    [Google Scholar]
  20. Marchesi J. R., Sato T., Weightman A. J., Martin T. A., Fry J. C., Hiom S. J., Wade W. G.. 1998; Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol64:795–799
    [Google Scholar]
  21. Massey W. L. K., Romberg D. M., Hunter N., Hume W. R.. 1993; The association of carious dentine microflora with tissue changes in human pulpitis. Oral Microbiol Immunol8:30–35[CrossRef]
    [Google Scholar]
  22. Miller J. H.. 1972; Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  23. Neidhardt F. C., Ingraham J. L., Schaechter M.. 1990; Physiology of the Bacterial Cell. A Molecular Approach Chapter 14 pp389–417 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  24. Relman D. A., Schmidt T. M., MacDermott R. P., Falkow S.. 1992; Identification of the uncultured Bacillus of Whipple’s disease. New Eng J Med327:293–301[CrossRef]
    [Google Scholar]
  25. Rupf S., Merte K., Eschrich K.. 1999; Quantification of bacteria in oral samples by competitive polymerase chain reaction. J Dent Res78:850–856[CrossRef]
    [Google Scholar]
  26. Schmidt T. M., Pace B., Pace N. R.. 1991; Detection of DNA contamination in Taq polymerase. Biotechniques11:176–177
    [Google Scholar]
  27. Suzuki M. T., Taylor L. T., DeLong E. F.. 2000; Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5′-nuclease assays. Appl Environ Microbiol66:4605–4614[CrossRef]
    [Google Scholar]
  28. Syed S. A., Loesche W. J.. 1972; Survival of human dental plaque flora in various transport media. Appl Microbiol26:459–465
    [Google Scholar]
  29. Tao L. T., MacAlister J., Tanzer J. M.. 1993; Transformation efficiency of EMS-induced mutants of Streptococcus mutans of altered cell shape. J Dent Res72:1032–1039[CrossRef]
    [Google Scholar]
  30. US Department of Health and Human Services – Centres for Disease Control 1982; Media for the isolation, characterization and identification of obligately anaerobic bacteria Washington, DC: USGPO;
    [Google Scholar]
  31. Veal D. A., Deere D., Ferrari B., Piper J., Attfield P. V.. 2000; Fluorescence staining and flow cytometry for monitoring microbial cells. J Immunol Methods243:191–210[CrossRef]
    [Google Scholar]
  32. Ward D. M., Weller R., Bateson M. M.. 1990; 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature345:63–65[CrossRef]
    [Google Scholar]
  33. Wilson K. H., Blitchington R. B., Greene R. C.. 1990; Amplification of bacterial 16S ribosomal DNA with polymerase chain reaction. J Clin Microbiol28:1942–1946
    [Google Scholar]
  34. Wintzingerode F. V., Stackebrandt E., Göbel U. B.. 1997; Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev21:213–229[CrossRef]
    [Google Scholar]
  35. Yanisch-Perron C., Vieira J., Messing J.. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene33:103–119[CrossRef]
    [Google Scholar]
  36. Zerr M. A., Cox C. D., Johnson W. T., Drake D. R.. 1998; Effect of red blood cells on the growth of Porphyromonas endodontalis and microbial community development. Oral Microbiol Immunol13:106–112[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-1-257
Loading
/content/journal/micro/10.1099/00221287-148-1-257
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error