1887

Abstract

Hybridization to a PCR product derived from conserved sigma-factor sequences led to the identification of two DNA segments that display significant sequence similarity to the family of genes encoding the σ (RpoH) heat-shock transcription factors. The first gene, , complements an mutation. Cells containing an mutation are impaired in growth at 37 °C under free-living conditions and are defective in nitrogen fixation during symbiosis with alfalfa. A plasmid-borne fusion increases in expression upon entry of the culture into the stationary phase of growth. The second gene, designated , is 42% identical to the gene. Cells containing an mutation have no apparent phenotype under free-living conditions or during symbiosis with the host plant alfalfa. An fusion increases in expression during the stationary phase of growth. The presence of two -like sequences in is reminiscent of the situation in , which has three genes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-9-2399
2001-09-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/9/1472399a.html?itemId=/content/journal/micro/10.1099/00221287-147-9-2399&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Zhang J., Zheng Z., Miller W., Lipman D. J., Schäffer A. A.. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402[CrossRef]
    [Google Scholar]
  2. Arsène F., Tomoyasu T., Mogk A., Schirra C., Schulze-Specking A., Bukau B.. 1999; Role of region C in regulation of the heat shock gene-specific sigma factor of Escherichia coli . J Bacteriol181:3552–3561
    [Google Scholar]
  3. Babst M., Hennecke H., Fischer H.-M.. 1996; Two different mechanisms are involved in the heat-shock regulation of chaperonin gene expression in Bradyrhizobium japonicum . Mol Microbiol19:827–839[CrossRef]
    [Google Scholar]
  4. Barnett M. J., Oke V., Long S. R.. 2000; New genetic tools for use in the Rhizobiaceae and other bacteria. BioTechniques29:240–245
    [Google Scholar]
  5. Beck C., Marty R., Hennecke H., Kläusli S., Göttfert M.. 1997; Dissection of the transcription machinery for housekeeping genes of Bradyrhizobium japonicum . J Bacteriol179:364–369
    [Google Scholar]
  6. Bent A. F., Signer E. R.. 1990; Rhizobium meliloti suhR suppresses the phenotype of an Escherichia coli RNA polymerase σ32 mutant. J Bacteriol172:3559–3568
    [Google Scholar]
  7. Bolivar F., Rodriguez R. L., Greene P. J., Betlach M. C., Heyneker H. L., Boyer H. W., Crosa J. H., Falkow S.. 1977; Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene 2:95–113[CrossRef]
    [Google Scholar]
  8. Bukau B.. 1993; Regulation of the Escherichia coli heat-shock response. Mol Microbiol9:671–680[CrossRef]
    [Google Scholar]
  9. Devereux J., Haeberli P., Smithies O.. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res12:387–395[CrossRef]
    [Google Scholar]
  10. Erickson J. W., Vaughn V., Walter W. A., Neidhardt F. C., Gross C. A.. 1987; Regulation of the promoters and transcripts of rpoH , the Escherichia coli heat shock regulatory gene. Genes Dev1:419–432[CrossRef]
    [Google Scholar]
  11. Finan T. M., Kunkel B., De Vos G. F., Signer E. R.. 1986; Second symbiotic megaplasmid in Rhizobium meliloti carrying exopolysaccharide and thiamine synthesis genes. J Bacteriol167:66–72
    [Google Scholar]
  12. Galibert F., Finan T. M., Long S. R.. 53 other authors 2001; The composite genome of the legume symbiont Sinorhizobium meliloti. Science293:668–672
    [Google Scholar]
  13. Gamer J., Multhaup G., Tomoyasu T., McCarty J. S., Schirra C., Bujard H., Bukau B., Rüdiger S., Schönfeld H.-J.. 1996; A cycle of binding and release of the DnaK, DnaJ and GrpE chaperones regulates the activity of the Escherichia coli heat shock transcription factor σ32. EMBO J15:607–617
    [Google Scholar]
  14. Gay P., Le Coq D., Steinmetz M., Berkelman T., Kado C. I.. 1985; Positive selection procedure for entrapment of insertion sequence elements in Gram-negative bacteria. J Bacteriol164:918–921
    [Google Scholar]
  15. Georgopoulos C., Liberek K., Zylicz M., Ang D.. 1994; Properties of the heat shock proteins of Escherichia coli and the autoregulation of the heat shock response. In The Biology of Heat Shock Proteins and Molecular Chaperones pp202–249 Edited by Morimoto R. I., Georgopoulos C., Tissières A.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  16. Glazebrook J., Walker G. C.. 1991; Genetic techniques in Rhizobium meliloti. Methods Enzymol204:398–418
    [Google Scholar]
  17. Gross C. A.. 1996; Function and regulation of the heat shock proteins. In Escherichia coli and Salmonella: Cellular and Molecular Biology pp1382–1399 Edited by Neidhardt F. C.. and others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  18. Hecker M., Schumann W., Völker U.. 1996; Heat-shock and general stress response in Bacillus subtilis . Mol Microbiol19:417–428[CrossRef]
    [Google Scholar]
  19. Herman C., d’Ari R., Bouloc P., Thévenet D.. 1995; Degradation of σ32, the heat shock regulator in Escherichia coli , is governed by HflB. Proc Natl Acad Sci USA92:3516–3520[CrossRef]
    [Google Scholar]
  20. Jenkins D. E., Auger E. A., Matin A.. 1991; Role of RpoH, a heat shock regulator protein, in Escherichia coli carbon starvation protein synthesis and survival. J Bacteriol173:1992–1996
    [Google Scholar]
  21. Joo D. M., Nolte A., Calendar R., Zhou Y. N., Jin D. J.. 1998; Multiple regions on the Escherichia coli heat shock transcription factor σ32 determine core RNA polymerase binding specificity. J Bacteriol180:1095–1102
    [Google Scholar]
  22. Kalinowski G., Long S. R.. 1996; Deletion analysis of the 5′ untranslated region of the Rhizobium meliloti nodF gene. Mol Plant–Microbe Interact9:869–873[CrossRef]
    [Google Scholar]
  23. Kitagawa M., Wada C., Yoshioka S., Yura T.. 1991; Expression of ClpB, an analog of the ATP-dependent protease regulatory subunit in Escherichia coli , is controlled by a heat shock σ factor (σ32). J Bacteriol173:4247–4253
    [Google Scholar]
  24. Kullik I., Fritsche S., Knobel H., Sanjuan J., Hennecke H., Fischer H.-M.. 1991; Bradyrhizobium japonicum has two differentially regulated, functional homologs of the σ54 gene ( rpoN ). J Bacteriol173:1125–1138
    [Google Scholar]
  25. Lonetto M., Gribskov M., Gross C. A.. 1992; The σ70 family: sequence conservation and evolutionary relationships. J Bacteriol174:3843–3849
    [Google Scholar]
  26. Meade H. M., Long S. R., Ruvkun G. B., Brown S. E., Ausubel F. M.. 1982; Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposon Tn 5 mutagenesis. J Bacteriol149:114–122
    [Google Scholar]
  27. Morita M. T., Tanaka Y., Kodama T. S., Kyogoku Y., Yanagi H., Yura T.. 1999; Translational induction of heat shock transcription factor σ32: evidence for a built-in RNA thermosensor. Genes Dev13:655–665[CrossRef]
    [Google Scholar]
  28. Myler P. J., Venkatarman G. M., Lodes M. J., Stuart K. D.. 1994; A frequently amplified region in Leishmania contains a gene frequently conserved in prokaryotes and eukaryotes. Gene148:187–193[CrossRef]
    [Google Scholar]
  29. Nagai H., Yuzawa H., Yura T.. 1991; Interplay of two cis-acting mRNA regions in translational control of σ32 synthesis during the heat shock response of Escherichia coli . Proc Natl Acad Sci USA88:10515–10519[CrossRef]
    [Google Scholar]
  30. Nagai H., Yuzawa H., Kanemori M., Yura T.. 1994; A distinct segment of the σ32 polypeptide is involved in DnaK-mediated negative control of the heat shock response in Escherichia coli . Proc Natl Acad Sci USA91:10280–10284[CrossRef]
    [Google Scholar]
  31. Nakahigashi K., Yanagi H., Yura T.. 1995; Isolation and sequence analysis of rpoH genes encoding σ32 homologs from gram negative bacteria: conserved mRNA and protein segments for heat shock regulation. Nucleic Acids Res23:4383–4390
    [Google Scholar]
  32. Narberhaus F., Weiglhofer W., Fisher H.-M., Hennecke H.. 1996; The Bradyrhizobium japonicum rpoH 1 gene encoding a σ32-like protein is part of a unique heat shock gene cluster together with groESL 1 and three small heat shock genes. J Bacteriol178:5337–5346
    [Google Scholar]
  33. Narberhaus F., Krummenacher P., Fischer H.-M., Hennecke H.. 1997; Three disparately regulated genes for σ32-like transcription factors in Bradyrhizobium japonicum . Mol Microbiol24:93–104[CrossRef]
    [Google Scholar]
  34. Narberhaus F., Kaser R., Nocker A., Hennecke H.. 1998a; A novel DNA element that controls bacterial heat shock gene expression. Mol Microbiol28:315–323[CrossRef]
    [Google Scholar]
  35. Narberhaus F., Kowarik M., Beck C., Hennecke H.. 1998b; Promoter selectivity of the Bradyrhizobium japonicum transcription factors in vivo and in vitro. J Bacteriol180:2395–2401
    [Google Scholar]
  36. Nicolas F. J., Cayuela M., Martı́nez-Argudo I. M., Ruiz-Vazquez R. M.. 1996; High mobility group I(Y)-like DNA-binding domains on a bacterial transcription factor. Proc Natl Acad Sci USA93:6881–6885[CrossRef]
    [Google Scholar]
  37. Oke V., Long S. R.. 1999; Bacterial genes induced within the nodule during the Rhizobium –legume symbiosis. Mol Microbiol32:837–850[CrossRef]
    [Google Scholar]
  38. Ono Y., Mitsui H., Sato T., Minamisawa K.. 2001; Two RpoH homologs responsible for the expression of heat shock protein genes in Sinorhizobium meliloti. Mol Gen Genet. 264902–912[CrossRef]
  39. Østerås M., Stanley J., Finan T. M.. 1995; Identification of Rhizobium- specific intergenic mosaic elements within an essential two-component regulatory system of Rhizobium species. J Bacteriol177:5485–5494
    [Google Scholar]
  40. Quandt J., Hynes M. F.. 1993; Versatile suicide vectors which allow direct selection for gene replacement in Gram-negative bacteria. Gene127:15–21[CrossRef]
    [Google Scholar]
  41. Raychaudhuri S., Conrad J., Hall B. G., Ofengand J.. 1998; A pseudouridine synthase required for the formation of two universally conserved pseudouridines in ribosomal RNA is essential for normal growth of Escherichia coli. RNA4:1407–1417[CrossRef]
    [Google Scholar]
  42. Ronson C. W., Nixon B. T., Albright L. M., Ausubel F. M.. 1987; Rhizobium meliloti ntrA ( rpoN ) gene is required for diverse metabolic functions. J Bacteriol169:2424–2431
    [Google Scholar]
  43. Rushing B. G.. 1995; Transcription factors in Rhizobium meliloti: characterization of the positive regulator NodD3 and two sigma subunits, SigA and SigB PhD thesis Stanford University;
    [Google Scholar]
  44. Rushing B. G., Long S. R.. 1995; Cloning and characterization of the sigA gene encoding the major sigma subunit of Rhizobium meliloti. J Bacteriol177:6952–6957
    [Google Scholar]
  45. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  46. Squires C. L., Pedersen S., Ross B. M., Squires C.. 1991; ClpB is the Escherichia coli heat shock protein F84.1. J Bacteriol173:4254–4262
    [Google Scholar]
  47. Staskawicz B., Dahlbeck D., Keen N., Napoli C.. 1987; Molecular characterization of cloned avirulence genes from race 0 and race 1 of Pseudomonas syringae pv. glycinea. J Bacteriol169:5789–5794
    [Google Scholar]
  48. Straus D. B., Walter W. A., Gross C. A.. 1987; The heat shock response of E. coli is regulated by changes in the concentration of σ32. Nature329:348–351[CrossRef]
    [Google Scholar]
  49. Swanson J. A., Mulligan J. T., Long S. R.. 1993; Regulation of syrM and nodD3 in Rhizobium meliloti. Genetics134:435–444
    [Google Scholar]
  50. Thorne S. H., Williams H. D.. 1997; Adaptation to nutrient starvation in Rhizobium leguminosarum bv. phaseoli: analysis of survival, stress resistance, and changes in macromolecular synthesis during entry to and exit from stationary phase. J Bacteriol179:6894–6901
    [Google Scholar]
  51. Tilly K., Erickson J., Sharma S., Georgopoulos C.. 1986; Heat shock regulatory gene rpoH mRNA level increases after heat shock in Escherichia coli . J Bacteriol168:1155–1158
    [Google Scholar]
  52. Tilly K., Spence J., Georgopoulos C.. 1989; Modulation of stability of the Escherichia coli heat shock regulatory factor σ32. J Bacteriol171:1585–1589
    [Google Scholar]
  53. Tomoyasu T., Gamer J., Bukau B.. 9 other authors 1995; Escherichia coli FtsH is a membrane-bound, ATP-dependent protease which degrades the heat-shock transcription factor σ32. EMBO J14:2551–2560
    [Google Scholar]
  54. Vieira J., Messing J.. 1987; Production of single-stranded plasmid DNA. Methods Enzymol153:3–11
    [Google Scholar]
  55. Wösten M. M. S. M.. 1998; Eubacterial sigma-factors. FEMS Microbiol Rev22:127–150[CrossRef]
    [Google Scholar]
  56. Yura T.. 1996; Regulation and conservation of the heat-shock transcription factor σ32. Genes Cells1:277–284[CrossRef]
    [Google Scholar]
  57. Yuzawa H., Nagai H., Mori H., Yura T.. 1993; Heat induction of σ32 synthesis mediated by mRNA secondary structure: a primary step of the heat shock response in Escherichia coli . Nucleic Acids Res21:5449–5455[CrossRef]
    [Google Scholar]
  58. Zhou Y.-N., Kusukawa N., Erickson J. W., Gross C. A., Yura T.. 1988; Isolation and characterization of Escherichia coli mutants that lack the heat shock sigma factor σ32. J Bacteriol170:3640–3649
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-9-2399
Loading
/content/journal/micro/10.1099/00221287-147-9-2399
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error