1887

Abstract

Hybridization to a PCR product derived from conserved sigma-factor sequences led to the identification of two DNA segments that display significant sequence similarity to the family of genes encoding the σ (RpoH) heat-shock transcription factors. The first gene, , complements an mutation. Cells containing an mutation are impaired in growth at 37 °C under free-living conditions and are defective in nitrogen fixation during symbiosis with alfalfa. A plasmid-borne fusion increases in expression upon entry of the culture into the stationary phase of growth. The second gene, designated , is 42% identical to the gene. Cells containing an mutation have no apparent phenotype under free-living conditions or during symbiosis with the host plant alfalfa. An fusion increases in expression during the stationary phase of growth. The presence of two -like sequences in is reminiscent of the situation in , which has three genes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-9-2399
2001-09-01
2019-08-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/9/1472399a.html?itemId=/content/journal/micro/10.1099/00221287-147-9-2399&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zheng, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389-3402.[CrossRef]
    [Google Scholar]
  2. Arsène, F., Tomoyasu, T., Mogk, A., Schirra, C., Schulze-Specking, A. & Bukau, B. ( 1999; ). Role of region C in regulation of the heat shock gene-specific sigma factor of Escherichia coli. J Bacteriol 181, 3552-3561.
    [Google Scholar]
  3. Babst, M., Hennecke, H. & Fischer, H.-M. ( 1996; ). Two different mechanisms are involved in the heat-shock regulation of chaperonin gene expression in Bradyrhizobium japonicum. Mol Microbiol 19, 827-839.[CrossRef]
    [Google Scholar]
  4. Barnett, M. J., Oke, V. & Long, S. R. ( 2000; ). New genetic tools for use in the Rhizobiaceae and other bacteria. BioTechniques 29, 240-245.
    [Google Scholar]
  5. Beck, C., Marty, R., Kläusli, S., Hennecke, H. & Göttfert, M. ( 1997; ). Dissection of the transcription machinery for housekeeping genes of Bradyrhizobium japonicum. J Bacteriol 179, 364-369.
    [Google Scholar]
  6. Bent, A. F. & Signer, E. R. ( 1990; ). Rhizobium meliloti suhR suppresses the phenotype of an Escherichia coli RNA polymerase σ32 mutant. J Bacteriol 172, 3559-3568.
    [Google Scholar]
  7. Bolivar, F., Rodriguez, R. L., Greene, P. J., Betlach, M. C., Heyneker, H. L., Boyer, H. W., Crosa, J. H. & Falkow, S. ( 1977; ). Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene 2, 95-113.[CrossRef]
    [Google Scholar]
  8. Bukau, B. ( 1993; ). Regulation of the Escherichia coli heat-shock response. Mol Microbiol 9, 671-680.[CrossRef]
    [Google Scholar]
  9. Devereux, J., Haeberli, P. & Smithies, O. ( 1984; ). A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12, 387-395.[CrossRef]
    [Google Scholar]
  10. Erickson, J. W., Vaughn, V., Walter, W. A., Neidhardt, F. C. & Gross, C. A. ( 1987; ). Regulation of the promoters and transcripts of rpoH, the Escherichia coli heat shock regulatory gene. Genes Dev 1, 419-432.[CrossRef]
    [Google Scholar]
  11. Finan, T. M., Kunkel, B., De Vos, G. F. & Signer, E. R. ( 1986; ). Second symbiotic megaplasmid in Rhizobium meliloti carrying exopolysaccharide and thiamine synthesis genes. J Bacteriol 167, 66-72.
    [Google Scholar]
  12. Galibert, F., Finan, T. M., Long, S. R. & 53 other authors ( 2001; ). The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293, 668–672.
    [Google Scholar]
  13. Gamer, J., Multhaup, G., Tomoyasu, T., McCarty, J. S., Rüdiger, S., Schönfeld, H.-J., Schirra, C., Bujard, H. & Bukau, B. ( 1996; ). A cycle of binding and release of the DnaK, DnaJ and GrpE chaperones regulates the activity of the Escherichia coli heat shock transcription factor σ32. EMBO J 15, 607-617.
    [Google Scholar]
  14. Gay, P., Le Coq, D., Steinmetz, M., Berkelman, T. & Kado, C. I. ( 1985; ). Positive selection procedure for entrapment of insertion sequence elements in Gram-negative bacteria. J Bacteriol 164, 918-921.
    [Google Scholar]
  15. Georgopoulos, C., Liberek, K., Zylicz, M. & Ang, D. ( 1994; ). Properties of the heat shock proteins of Escherichia coli and the autoregulation of the heat shock response. In The Biology of Heat Shock Proteins and Molecular Chaperones , pp. 202-249. Edited by R. I. Morimoto, A. Tissières & C. Georgopoulos. Cold Spring Harbor, NY:Cold Spring Harbor Laboratory.
  16. Glazebrook, J. & Walker, G. C. ( 1991; ). Genetic techniques in Rhizobium meliloti. Methods Enzymol 204, 398-418.
    [Google Scholar]
  17. Gross, C. A. (1996). Function and regulation of the heat shock proteins. In Escherichia coli and Salmonella: Cellular and Molecular Biology, pp. 1382–1399. Edited by F. C. Neidhardt and others. Washington, DC: American Society for Microbiology.
  18. Hecker, M., Schumann, W. & Völker, U. ( 1996; ). Heat-shock and general stress response in Bacillus subtilis. Mol Microbiol 19, 417-428.[CrossRef]
    [Google Scholar]
  19. Herman, C., Thévenet, D., d’Ari, R. & Bouloc, P. ( 1995; ). Degradation of σ32, the heat shock regulator in Escherichia coli, is governed by HflB. Proc Natl Acad Sci USA 92, 3516-3520.[CrossRef]
    [Google Scholar]
  20. Jenkins, D. E., Auger, E. A. & Matin, A. ( 1991; ). Role of RpoH, a heat shock regulator protein, in Escherichia coli carbon starvation protein synthesis and survival. J Bacteriol 173, 1992-1996.
    [Google Scholar]
  21. Joo, D. M., Nolte, A., Calendar, R., Zhou, Y. N. & Jin, D. J. ( 1998; ). Multiple regions on the Escherichia coli heat shock transcription factor σ32 determine core RNA polymerase binding specificity. J Bacteriol 180, 1095-1102.
    [Google Scholar]
  22. Kalinowski, G. & Long, S. R. ( 1996; ). Deletion analysis of the 5′ untranslated region of the Rhizobium meliloti nodF gene. Mol Plant–Microbe Interact 9, 869-873.[CrossRef]
    [Google Scholar]
  23. Kitagawa, M., Wada, C., Yoshioka, S. & Yura, T. ( 1991; ). Expression of ClpB, an analog of the ATP-dependent protease regulatory subunit in Escherichia coli, is controlled by a heat shock σ factor (σ32). J Bacteriol 173, 4247-4253.
    [Google Scholar]
  24. Kullik, I., Fritsche, S., Knobel, H., Sanjuan, J., Hennecke, H. & Fischer, H.-M. ( 1991; ). Bradyrhizobium japonicum has two differentially regulated, functional homologs of the σ54 gene (rpoN). J Bacteriol 173, 1125-1138.
    [Google Scholar]
  25. Lonetto, M., Gribskov, M. & Gross, C. A. ( 1992; ). The σ70 family: sequence conservation and evolutionary relationships. J Bacteriol 174, 3843-3849.
    [Google Scholar]
  26. Meade, H. M., Long, S. R., Ruvkun, G. B., Brown, S. E. & Ausubel, F. M. ( 1982; ). Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposon Tn5 mutagenesis. J Bacteriol 149, 114-122.
    [Google Scholar]
  27. Morita, M. T., Tanaka, Y., Kodama, T. S., Kyogoku, Y., Yanagi, H. & Yura, T. ( 1999; ). Translational induction of heat shock transcription factor σ32: evidence for a built-in RNA thermosensor. Genes Dev 13, 655-665.[CrossRef]
    [Google Scholar]
  28. Myler, P. J., Venkatarman, G. M., Lodes, M. J. & Stuart, K. D. ( 1994; ). A frequently amplified region in Leishmania contains a gene frequently conserved in prokaryotes and eukaryotes. Gene 148, 187-193.[CrossRef]
    [Google Scholar]
  29. Nagai, H., Yuzawa, H. & Yura, T. ( 1991; ). Interplay of two cis-acting mRNA regions in translational control of σ32 synthesis during the heat shock response of Escherichia coli. Proc Natl Acad Sci USA 88, 10515-10519.[CrossRef]
    [Google Scholar]
  30. Nagai, H., Yuzawa, H., Kanemori, M. & Yura, T. ( 1994; ). A distinct segment of the σ32 polypeptide is involved in DnaK-mediated negative control of the heat shock response in Escherichia coli. Proc Natl Acad Sci USA 91, 10280-10284.[CrossRef]
    [Google Scholar]
  31. Nakahigashi, K., Yanagi, H. & Yura, T. ( 1995; ). Isolation and sequence analysis of rpoH genes encoding σ32 homologs from gram negative bacteria: conserved mRNA and protein segments for heat shock regulation. Nucleic Acids Res 23, 4383-4390.
    [Google Scholar]
  32. Narberhaus, F., Weiglhofer, W., Fisher, H.-M. & Hennecke, H. ( 1996; ). The Bradyrhizobium japonicum rpoH 1 gene encoding a σ32-like protein is part of a unique heat shock gene cluster together with groESL 1 and three small heat shock genes. J Bacteriol 178, 5337-5346.
    [Google Scholar]
  33. Narberhaus, F., Krummenacher, P., Fischer, H.-M. & Hennecke, H. ( 1997; ). Three disparately regulated genes for σ32-like transcription factors in Bradyrhizobium japonicum. Mol Microbiol 24, 93-104.[CrossRef]
    [Google Scholar]
  34. Narberhaus, F., Kaser, R., Nocker, A. & Hennecke, H. ( 1998a; ). A novel DNA element that controls bacterial heat shock gene expression. Mol Microbiol 28, 315-323.[CrossRef]
    [Google Scholar]
  35. Narberhaus, F., Kowarik, M., Beck, C. & Hennecke, H. ( 1998b; ). Promoter selectivity of the Bradyrhizobium japonicum transcription factors in vivo and in vitro. J Bacteriol 180, 2395-2401.
    [Google Scholar]
  36. Nicolas, F. J., Cayuela, M., Martı́nez-Argudo, I. M. & Ruiz-Vazquez, R. M. ( 1996; ). High mobility group I(Y)-like DNA-binding domains on a bacterial transcription factor. Proc Natl Acad Sci USA 93, 6881-6885.[CrossRef]
    [Google Scholar]
  37. Oke, V. & Long, S. R. ( 1999; ). Bacterial genes induced within the nodule during the Rhizobium–legume symbiosis. Mol Microbiol 32, 837-850.[CrossRef]
    [Google Scholar]
  38. Ono, Y., Mitsui, H., Sato, T. & Minamisawa, K. ( 2001; ). Two RpoH homologs responsible for the expression of heat shock protein genes in Sinorhizobium meliloti. Mol Gen Genet 264, 902-912.[CrossRef]
    [Google Scholar]
  39. Østerås, M., Stanley, J. & Finan, T. M. ( 1995; ). Identification of Rhizobium-specific intergenic mosaic elements within an essential two-component regulatory system of Rhizobium species. J Bacteriol 177, 5485-5494.
    [Google Scholar]
  40. Quandt, J. & Hynes, M. F. ( 1993; ). Versatile suicide vectors which allow direct selection for gene replacement in Gram-negative bacteria. Gene 127, 15-21.[CrossRef]
    [Google Scholar]
  41. Raychaudhuri, S., Conrad, J., Hall, B. G. & Ofengand, J. ( 1998; ). A pseudouridine synthase required for the formation of two universally conserved pseudouridines in ribosomal RNA is essential for normal growth of Escherichia coli. RNA 4, 1407-1417.[CrossRef]
    [Google Scholar]
  42. Ronson, C. W., Nixon, B. T., Albright, L. M. & Ausubel, F. M. ( 1987; ). Rhizobium meliloti ntrA (rpoN) gene is required for diverse metabolic functions. J Bacteriol 169, 2424-2431.
    [Google Scholar]
  43. Rushing, B. G. (1995). Transcription factors in Rhizobium meliloti: characterization of the positive regulator NodD3 and two sigma subunits, SigA and SigB. PhD thesis, Stanford University.
  44. Rushing, B. G. & Long, S. R. ( 1995; ). Cloning and characterization of the sigA gene encoding the major sigma subunit of Rhizobium meliloti. J Bacteriol 177, 6952-6957.
    [Google Scholar]
  45. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  46. Squires, C. L., Pedersen, S., Ross, B. M. & Squires, C. ( 1991; ). ClpB is the Escherichia coli heat shock protein F84.1. J Bacteriol 173, 4254-4262.
    [Google Scholar]
  47. Staskawicz, B., Dahlbeck, D., Keen, N. & Napoli, C. ( 1987; ). Molecular characterization of cloned avirulence genes from race 0 and race 1 of Pseudomonas syringae pv. glycinea. J Bacteriol 169, 5789-5794.
    [Google Scholar]
  48. Straus, D. B., Walter, W. A. & Gross, C. A. ( 1987; ). The heat shock response of E. coli is regulated by changes in the concentration of σ32. Nature 329, 348-351.[CrossRef]
    [Google Scholar]
  49. Swanson, J. A., Mulligan, J. T. & Long, S. R. ( 1993; ). Regulation of syrM and nodD3 in Rhizobium meliloti. Genetics 134, 435-444.
    [Google Scholar]
  50. Thorne, S. H. & Williams, H. D. ( 1997; ). Adaptation to nutrient starvation in Rhizobium leguminosarum bv. phaseoli: analysis of survival, stress resistance, and changes in macromolecular synthesis during entry to and exit from stationary phase. J Bacteriol 179, 6894-6901.
    [Google Scholar]
  51. Tilly, K., Erickson, J., Sharma, S. & Georgopoulos, C. ( 1986; ). Heat shock regulatory gene rpoH mRNA level increases after heat shock in Escherichia coli. J Bacteriol 168, 1155-1158.
    [Google Scholar]
  52. Tilly, K., Spence, J. & Georgopoulos, C. ( 1989; ). Modulation of stability of the Escherichia coli heat shock regulatory factor σ32. J Bacteriol 171, 1585-1589.
    [Google Scholar]
  53. Tomoyasu, T., Gamer, J., Bukau, B. & 9 other authors ( 1995; ). Escherichia coli FtsH is a membrane-bound, ATP-dependent protease which degrades the heat-shock transcription factor σ32. EMBO J 14, 2551–2560.
    [Google Scholar]
  54. Vieira, J. & Messing, J. ( 1987; ). Production of single-stranded plasmid DNA. Methods Enzymol 153, 3-11.
    [Google Scholar]
  55. Wösten, M. M. S. M. ( 1998; ). Eubacterial sigma-factors. FEMS Microbiol Rev 22, 127-150.[CrossRef]
    [Google Scholar]
  56. Yura, T. ( 1996; ). Regulation and conservation of the heat-shock transcription factor σ32. Genes Cells 1, 277-284.[CrossRef]
    [Google Scholar]
  57. Yuzawa, H., Nagai, H., Mori, H. & Yura, T. ( 1993; ). Heat induction of σ32 synthesis mediated by mRNA secondary structure: a primary step of the heat shock response in Escherichia coli. Nucleic Acids Res 21, 5449-5455.[CrossRef]
    [Google Scholar]
  58. Zhou, Y.-N., Kusukawa, N., Erickson, J. W., Gross, C. A. & Yura, T. ( 1988; ). Isolation and characterization of Escherichia coli mutants that lack the heat shock sigma factor σ32. J Bacteriol 170, 3640-3649.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-9-2399
Loading
/content/journal/micro/10.1099/00221287-147-9-2399
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error