1887

Abstract

The mutation in ISP5230 confers a growth requirement for pyridoxal (pdx) and is a marker for the genetically mapped cluster of genes associated with chloramphenicol biosynthesis. A gene regulating salvage synthesis of vitamin B6 cofactors in was cloned by transforming a mutant host with the plasmid vector pDQ101 carrying a library of wild-type genomic DNA fragments, and by selecting for complementation of the host’s pdx requirement. However, the corresponding replicative plasmid could not be isolated. Southern hybridizations and transduction analysis indicated that the complementing plasmid had integrated into the chromosome; after excision by a second crossover, the plasmid failed to propagate. To avoid loss of the recombinant vector, a pdx-dependent mutant, KAA1, with a phenotype matching that of , was isolated for use as the cloning host. Introduction of pIJ702 carrying an genomic library into KAA1, and selection of prototrophic transformants, led to the isolation of a stable recombinant vector containing a 25 kb DNA fragment that complemented requirements for pdx in both and mutants. Sequence analysis of the cloned DNA located an intact ORF with a deduced amino acid sequence that, in its central and C-terminal regions resembled type-I aminotransferases. The N-terminal region of the cloned DNA fragment aligned closely with distinctive helix–turn–helix motifs found near the N termini of GntR family transcriptional regulators. The overall deduced amino acid sequence of the cloned DNA showed 73% end-to-end identity to a putative GntR-type regulator cloned in cosmid 6D7 from the A3(2) genome. This location is close to that of , the first marker in A3(2) identified and mapped genetically in Sir David Hopwood’s laboratory. The gene and are postulated to be homologues regulating vitamin B6 coenzyme synthesis from pdx.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-8-2103
2001-08-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/8/1472103a.html?itemId=/content/journal/micro/10.1099/00221287-147-8-2103&mimeType=html&fmt=ahah

References

  1. Aidoo D. A.. 1989; Approaches to the cloning of genes for chloramphenicol biosynthesis in Streptomyces venezuelae ISP5230. PhD thesis Dalhousie University; Halifax, NS, Canada:
  2. Aidoo D. A., Barrett K., Vining L. C.. 1990; Plasmid transformation of Streptomyces venezuelae : modified procedures used to introduce the genes for p -aminobenzoate synthetase. J Gen Microbiol136:657–662[CrossRef]
    [Google Scholar]
  3. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402[CrossRef]
    [Google Scholar]
  4. Baltz R. H., Seno E. T.. 1988; Genetics of Streptomyces fradiae and tylosin biosynthesis. Annu Rev Microbiol42:547–574[CrossRef]
    [Google Scholar]
  5. Brennan R. G., Matthews B. W.. 1989; The helix–turn–helix DNA binding motif. J Biol Chem264:1903–1906
    [Google Scholar]
  6. Cosmina P., Rodriguez F., Grandi G., Perego M., Venema G., de Ferra F., van Sinderen D.. 1993; Sequence and analysis of the genetic locus responsible for surfactin synthesis in Bacillus subtilis. Mol Microbiol8821–831[CrossRef]
    [Google Scholar]
  7. Delic V., Hopwood D. A., Friend E. J.. 1970; Mutagenesis by N -methyl- N -nitro- N -nitrosoguanidine. Mutat Res9:167–182[CrossRef]
    [Google Scholar]
  8. Dempsey W. B.. 1966; Synthesis of pyridoxine by a pyridoxal auxotroph of Escherichia coli. J Bacteriol 92:333–337
    [Google Scholar]
  9. Dempsey W. B.. 1987; Synthesis of pyridoxal phosphate . In Escherichia coli and Salmonella typhimurium pp539–543 Edited by Neidhardt F. C., Ingraham D. L., Brooks K., Low, Magasanik B., Schaechter M., Umbarger H. E.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  10. Denhardt D. T.. 1966; A membrane filter technique for the detection of complementary DNA. Biochem Biophys Res Commun23:641–646[CrossRef]
    [Google Scholar]
  11. Devereux J., Haeberli P., Smithies O.. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res12:387–395[CrossRef]
    [Google Scholar]
  12. Doull J., Ahmed Z., Stuttard C., Vining L. C.. 1985; Isolation and characterization of Streptomyces venezuelae mutants blocked in chloramphenicol biosynthesis. J Gen Microbiol131:97–104
    [Google Scholar]
  13. Doull J. L., Vats S., Chaliciopoulos M., Stuttard C., Wong K., Vining L. C.. 1986; Conjugational fertility and location of chloramphenicol biosynthesis genes on the chromosomal linkage map of Streptomyces venezuelae. J Gen Microbiol132:1327–1338
    [Google Scholar]
  14. Facey S. J., Gross F., Vining L. C., Yang K., van Pee K. H.. 1996; Cloning, sequencing and disruption of a bromoperoxidase-catalase gene in Streptomyces venezuelae. Microbiology142:657–665[CrossRef]
    [Google Scholar]
  15. Han L., Yang K., Ramalingam E., Mosher R. H., Vining L. C.. 1994; Cloning and characterization of polyketide synthase genes for jadomycin B biosynthesis in Streptomyces venezuelae ISP5230. Microbiology140:3379–3389[CrossRef]
    [Google Scholar]
  16. Haydon D. J., Guest J. R.. 1991; A new family of bacterial regulatory proteins. FEMS Microbiol Lett79:291–296[CrossRef]
    [Google Scholar]
  17. Henikoff S.. 1984; Unidirectional deletion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene28:351–359[CrossRef]
    [Google Scholar]
  18. Holmes D. S., Quigley M.. 1981; A rapid boiling method for the preparation of bacterial plasmids. Anal Biochem114:193–200[CrossRef]
    [Google Scholar]
  19. Hopwood D. A.. 1967; Genetic analysis and genome structure in Streptomyces coelicolor . Bacteriol Rev31:373–403
    [Google Scholar]
  20. Hopwood D. A., Kieser T.. 1990; The Streptomyces genome. In The Bacterial Chromosome pp147–162 Edited by Drlica K., Riley M.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  21. Hopwood D. A., Bibb M. J., Chater K. F.. and 7 other authors 1985; Genetic Manipulation of Streptomyces: a Laboratory Manual Norwich: John Innes Foundation;
    [Google Scholar]
  22. Ishikawa J., Hotta K.. 1999; Frameplot: a new implementation of the frame analysis for predicting protein-coding regions in bacterial DNA with a high G+C content. FEMS Microbiol Lett174:251–253[CrossRef]
    [Google Scholar]
  23. Katz E., Thompson C. J., Hopwood D. A.. 1983; Cloning and expression of the tyrosinase gene from Streptomyces antibioticus in Streptomyces lividans . J Gen Microbiol129:2703–2714
    [Google Scholar]
  24. Kendall K. J., Cohen S. N.. 1988; Complete nucleotide sequence of Streptomyces lividans plasmid pIJ101 and correlation of the sequence with genetic properties. J Bacteriol170:4634–4651
    [Google Scholar]
  25. Kieser T.. 1984; Factors affecting the isolation of cccDNA from Streptomyces lividans and Escherichia coli . Plasmid12:19–36[CrossRef]
    [Google Scholar]
  26. Kieser T., Bibb M. J., Buttner M. J., Chater K. F., Hopwood D. A.. 2000; Practical Streptomyces Genetics Norwich: John Innes Foundation;
    [Google Scholar]
  27. Larson J. L., Hershberger C. L.. 1986; The minimal replicon of a streptomycete plasmid produces an ultrahigh level of plasmid DNA. Plasmid15:199–209[CrossRef]
    [Google Scholar]
  28. Lydiate D. J., Malpartida F., Hopwood D. A.. 1985; The Streptomyces plasmid SCP2*: its functional analysis and development into useful cloning vectors. Gene35:223–235[CrossRef]
    [Google Scholar]
  29. MacNeil D. J., Gewain K. M., Rudy C. L., Dezeny G., Gibbons P. H., MacNeil T.. 1992; Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene111:61–68[CrossRef]
    [Google Scholar]
  30. Neidle E. L., Kaplan S.. 1992; Rhodobacter sphaeroides rdxA , a homolog of Rhizobium meliloti fixG , encodes a membrane protein which may bind cytoplasmic [4Fe–4S] clusters. J Bacteriol 174:6444–6454
    [Google Scholar]
  31. Pabo C. O., Sauer R. T.. 1984; Protein–DNA recognition. Annu Rev Biochem53:293–321[CrossRef]
    [Google Scholar]
  32. Paradkar A. S., Jensen S. E.. 1995; Functional analysis of the gene encoding the clavaminate synthase 2 isoenzyme involved in clavulanic acid biosynthesis in Streptomyces clavuligerus . J Bacteriol177:1307–1314
    [Google Scholar]
  33. Paradkar A. S., Stuttard C., Vining L. C.. 1993; Location of the genes for anthranilate synthase in Streptomyces venezuelae ISP5230: genetic mapping after integration of the cloned genes. J Gen Microbiol139:687–694[CrossRef]
    [Google Scholar]
  34. Redenbach M., Kieser H. M., Denapaite D., Eichner A., Cullum L., Kinashi H., Hopwood D. A.. 1996; A set of ordered cosmids and a detailed genetic and physical map for the 8 Mb Streptomyces coelicolor A3(2) chromosome. Mol Microbiol21:77–96[CrossRef]
    [Google Scholar]
  35. Rossbach S., Kulpa D. A., Rossbach U., de Bruijn F. J.. 1994; Molecular and genetic characterization of the rhizopine catabolism ( mocABRC) genes of Rhizobium meliloti L5-30. Mol Gen Genet245:11–24[CrossRef]
    [Google Scholar]
  36. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  37. Sanger F., Nicklen S., Coulson A. R.. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA74:5463–5467[CrossRef]
    [Google Scholar]
  38. Southern E. M.. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol98:503–517[CrossRef]
    [Google Scholar]
  39. Stuttard C.. 1982; Temperate phages of Streptomyces venezuelae : lysogeny and host specificity shown by SV1 and SV2. J Gen Microbiol128:115–121
    [Google Scholar]
  40. Stuttard C.. 1988; Transduction and genome structure in Streptomyces. . Dev Ind Microbiol29:69–75
    [Google Scholar]
  41. Stuttard C.. 1989; Generalized transduction in Streptomyces species. In Genetics and Molecular Biology of Industrial Microorganisms pp157–162 Edited by Hershberger C. L., Queener S. W., Hegeman G.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  42. Stuttard C., Atkinson L., Vats S.. 1987; Genome structure in Streptomyces spp.: adjacent genes on the S. coelicolor A3(2) linkage map have cotransducible analogs in S. venezuelae . J Bacteriol169:3809–3813
    [Google Scholar]
  43. Thompson C. J., Ward J. M., Hopwood D. A.. 1982; Cloning of antibiotic resistance and nutritional genes in streptomycetes. J Bacteriol151:668–672
    [Google Scholar]
  44. Titgemeyer F., Reizer J., Reizer A., Tang J., Parr T. R. Jr, Saier H. M. Jr. 1995; Nucleotide sequence of the region between crr and cysM in Salmonella typhimurium : five novel ORFs, including one encoding a putative transcriptional regulator of the phosphotransferase system. DNA Seq5:145–152
    [Google Scholar]
  45. Vats S.. 1987; The fine structure mapping of chloramphenicol biosynthesis genes in Streptomyces venezuelae. PhD thesis Dalhousie University; Halifax, NS, Canada:
  46. Vats S., Atkinson L., Stuttard C.. 1987a; Genome structure in Streptomyces spp.: adjacent genes on the S. coelicolor A3(2) linkage map have transducible analogs in S.venezuelae. J Bacteriol169:3814–3816
    [Google Scholar]
  47. Vats S., Stuttard C., Vining L. C.. 1987b; Transductional analysis of chloramphenicol biosynthesis genes in Streptomyces venezuelae. J Bacteriol169:3809–3813
    [Google Scholar]
  48. Vining L. C., Stuttard C.. 1994; Chloramphenicol. In Genetics and Biochemistry of Antibiotic Production pp505–530 Edited by Vining L. C., Stuttard C.. Boston: Butterworth-Heinemann;
    [Google Scholar]
  49. Vining L. C., Westlake D. W. S.. 1984; Chloramphenicol: properties, biosynthesis and fermentation. In Biotechnology of Industrial Antibiotics pp387–411 Edited by Vandamme S. J.. New York & Basel: Marcel Dekker;
    [Google Scholar]
  50. Vivian A., Charles H. P.. 1970; The occurrence and genetics of some CO2 mutants in Streptomyces coelicolor . J Gen Microbiol61:263–271[CrossRef]
    [Google Scholar]
  51. Wright F., Bibb M. J.. 1992; Codon usage in the G+C-rich Streptomyces genome. Gene113:55–65[CrossRef]
    [Google Scholar]
  52. Wu C., Zhao S., Chen H. L., Lo C. J., McLarty J.. 1996; Motif identification neural design for rapid and sensitive protein family search. CABIOS12:109–118
    [Google Scholar]
  53. Wu C., Shivakumar S., Shivakumar C. V., Chen S.. 1998; GeneFIND web server for protein family identification and information retrieval. Bioinformatics14:223–224[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-8-2103
Loading
/content/journal/micro/10.1099/00221287-147-8-2103
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error