1887

Abstract

In fungi, the cell wall plays a major role in host–pathogen interactions. Despite this, little is known about the molecular basis of cell wall assembly in , which has emerged as the second most common cause of systemic candidosis. A gene family, , that shares significant homologies with both the gene of , which is necessary for cell wall assembly, and the pH-regulated genes and of , which are involved in cell wall assembly and required for virulence, has been cloned. Among the members of this family, display a unique expression pattern. Both and are constitutively expressed. In contrast, transcript was not detectable under any of the assayed conditions. The actin gene, , has also been cloned to be used as a meaningful loading control in Northern blots. and were deleted by two different methodological approaches. A rapid PCR-based strategy by which gene disruption was achieved with short regions of homology (50 bp) was applied successfully to . Δ or Δ cells demonstrated similar aberrant morphologies, displaying an altered bud morphology and forming floccose aggregates. These phenotypes suggest a role for and in cell wall biosynthesis. Further evidence for this hypothesis was obtained by successful functional complementation of a null mutation in with the or gene.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-8-2007
2001-08-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/8/1472007a.html?itemId=/content/journal/micro/10.1099/00221287-147-8-2007&mimeType=html&fmt=ahah

References

  1. Belli, G., Gari, E., Aldea, M. & Herrero, E. ( 1998; ). Functional analysis of yeast essential genes using a promoter-substitution cassette and the tetracycline-regulatable dual expression system. Yeast 14, 1127-1138.[CrossRef]
    [Google Scholar]
  2. Chaffin, W. L., Lopez-Ribot, J. L., Casanova, M., Gozalbo, D. & Martinez, J. P. ( 1998; ). Cell wall and secreted proteins of Candida albicans: identification, function, and expression. Microbiol Mol Biol Rev 62, 130-180.
    [Google Scholar]
  3. Cormack, B. P., Ghori, N. & Falkow, S. ( 1999; ). An adhesin of the yeast pathogen Candida glabrata mediating adherence to human epithelial cells. Science 285, 578-582.[CrossRef]
    [Google Scholar]
  4. Davis, D., Wilson, R. B. & Mitchell, A. P. ( 2000; ). RIM101-dependent and -independent pathways govern pH responses in Candida albicans. Mol Cell Biol 20, 971-978.[CrossRef]
    [Google Scholar]
  5. De Bernardis, F., Mühlschlegel, F. A., Cassone, A. & Fonzi, W. A. ( 1998; ). The pH of the host niche controls gene expression in and virulence of Candida albicans. Infect Immun 66, 3317-3325.
    [Google Scholar]
  6. Douglas, C. M., D’Ippolito, J. A., Shei, G. J. & 9 other authors ( 1997; ). Identification of the FKS1 gene of Candida albicans as the essential target of 1,3-beta-d-glucan synthase inhibitors. Antimicrob Agents Chemother 41, 2471–2479.
    [Google Scholar]
  7. Edmont, M. B., Wallace, S. E., McClish, D. K., Pfaller, M. A., Jones, R. N. & Wenzel, R. P. ( 1999; ). Nosocomial bloodstream infections in United States hospitals: a three-year analysis. Clin Infect Dis 29, 239-244.[CrossRef]
    [Google Scholar]
  8. El Barkani, A., Haynes, K., Mösch, H. U., Frosch, M. & Mühlschlegel, F. ( 2000a; ). Candida glabrata shuttle vectors suitable for translational fusions to lacZ and use of beta-galactosidase as a reporter of gene expression. Gene 246, 151-155.[CrossRef]
    [Google Scholar]
  9. El Barkani, A., Kurzai, O., Fonzi, W. A., Ramon, A. M., Porta, A., Frosch, M. & Mühlschlegel, F. ( 2000b; ). Dominant active alleles of RIM101 (PRR2) bypass the pH restriction on filamentation of Candida albicans. Mol Cell Biol 13, 4635-4647.
    [Google Scholar]
  10. Fidel, P. L., Vazquez, J. A. & Sobel, J. D. ( 1999; ). Candida glabrata: review of epidemiology, pathogenesis, and clinical disease with comparison to C. albicans. Clin Microbiol Rev 12, 80-96.
    [Google Scholar]
  11. Fonzi, W. A. ( 1999; ). PHR1 and PHR2 of Candida albicans encode putative glycosidases required for proper cross-linking of beta-1,3- and beta-1,6-glucans. J Bacteriol 181, 7070-7079.
    [Google Scholar]
  12. Fonzi, W. A. & Irwin, M. Y. ( 1993; ). Isogenic strain construction and gene mapping in Candida albicans. Genetics 134, 717-728.
    [Google Scholar]
  13. Gerber, L. D., Kodukula, K. & Udenfriend, S. ( 1992; ). Phosphatidylinositol glycan (PI-G) anchored membrane proteins. Amino acid requirements adjacent to the site of cleavage and PI-G attachment in the COOH-terminal signal peptide. J Biol Chem 267, 12168-12173.
    [Google Scholar]
  14. Ghannoum, M. A., Spellberg, B., Saporito-Irwin, S. M. & Fonzi, W. A. ( 1995; ). Reduced virulence of Candida albicans PHR1 mutants. Infect Immun 63, 4528-4530.
    [Google Scholar]
  15. Gietz, D., St Jean, A., Woods, R. A. & Schiestl, R. H. ( 1992; ). Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 20, 1425.[CrossRef]
    [Google Scholar]
  16. Heinz, W. J., Kurzai, O., Brakhage, A., Fonzi, W. A., Korting, H. C., Frosch, M. & Mühlschlegel, F. ( 2000; ). Molecular responses to changes of the environmental pH are conserved between Candida dubliniensis and Candida albicans. Int J Med Microbiol 290, 231-238.[CrossRef]
    [Google Scholar]
  17. Hirokawa, T., Boon, C. S. & Mitaku, S. ( 1998; ). SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics 14, 378-379.[CrossRef]
    [Google Scholar]
  18. Huang, M. E., Cadieu, E., Souciet, J. L. & Galibert, F. ( 1997; ). Disruption of six novel yeast genes reveals three genes essential for vegetative growth and one required for growth at low temperature. Yeast 13, 1181-1194.[CrossRef]
    [Google Scholar]
  19. Jentoft, N. ( 1990; ). Why are proteins O-glycosylated? Trends Biochem Sci 15, 291-294.[CrossRef]
    [Google Scholar]
  20. Kamran, M., Rogers, T., Mühlschlegel, F. A. & Haynes, K. (2000). Construction of a library of signature tagged insertional mutants in the pathogenic yeast Candida glabrata. In Abstracts of the Yeast Genetics and Molecular Biology Meeting, Seattle, USA, July 25–30, abstract 555. Genetics Society of America.
  21. Kapteyn, J. C., Ram, A. F., Groos, E. M., Kollar, R., Montijn, R. C., van den Ende, H., Llobell, A., Cabib, E. & Klis, F. M. ( 1997; ). Altered extent of cross-linking of beta1,6-glucosylated mannoproteins to chitin in Saccharomyces cerevisiae mutants with reduced cell wall beta1,3-glucan content. J Bacteriol 179, 6279-6284.
    [Google Scholar]
  22. Kitada, K., Yamaguchi, E. & Arisawa, M. ( 1995; ). Cloning of the Candida glabrata TRP1 and HIS3 genes, and construction of their disruptant strains by sequential integrative transformation. Gene 165, 203-206.[CrossRef]
    [Google Scholar]
  23. Kitada, K., Yamaguchi, E. & Arisawa, M. ( 1996; ). Isolation of a Candida glabrata centromere and its use in construction of plasmid vectors. Gene 175, 105-108.[CrossRef]
    [Google Scholar]
  24. Kitada, K., Yamaguchi, E., Hamada, K. & Arisawa, M. ( 1997; ). Structural analysis of a Candida glabrata centromere and its functional homology to the Saccharomyces cerevisiae centromere. Curr Genet 31, 122-127.[CrossRef]
    [Google Scholar]
  25. Kurtz, M. B. & Douglas, C. M. ( 1997; ). Lipopeptide inhibitors of fungal glucan synthase. J Med Vet Mycol 35, 79-86.[CrossRef]
    [Google Scholar]
  26. Kurzai, O., Heinz, W. J., Sullivan, D. J., Coleman, D. C., Frosch, M. & Mühlschlegel, F. A. ( 1999; ). Rapid PCR test for discriminating between Candida albicans and Candida dubliniensis isolates using primers derived from the pH-regulated PHR1 and PHR2 genes of C. albicans. J Clin Microbiol 37, 1587-1590.
    [Google Scholar]
  27. Kurzai, O., Korting, H. C., Harmsen, D., Bautsch, W., Molitor, M., Frosch, M. & Mühlschlegel, F. A. ( 2000; ). Molecular and phenotypic identification of the yeast pathogen Candida dubliniensis. J Mol Med 78, 521-529.[CrossRef]
    [Google Scholar]
  28. Losberger, C. & Ernst, J. F. ( 1989; ). Sequence of the Candida albicans gene encoding actin. Nucleic Acids Res 17, 9488.[CrossRef]
    [Google Scholar]
  29. Mouyna, I., Fontaine, T., Vai, M., Monod, M., Fonzi, W. A., Diaquin, M., Popolo, L., Hartland, R. P. & Latge, J. P. ( 2000; ). Glycosylphosphatidylinositol-anchored glucanosyltransferases play an active role in the biosynthesis of the fungal cell wall. J Biol Chem 275, 14882-14889.[CrossRef]
    [Google Scholar]
  30. Mühlschlegel, F. A. & Fonzi, W. A. ( 1997; ). PHR2 of Candida albicans encodes a functional homolog of the pH-regulated gene PHR1 with an inverted pattern of pH-dependent expression. Mol Cell Biol 17, 5960-5967.
    [Google Scholar]
  31. M hlschlegel, F., Fonzi, W., Hoyer, L. & 12 other authors ( 1998; ). Molecular mechanisms of virulence in fungus-host interactions for Aspergillus fumigatus and Candida albicans. Med Mycol 36 (suppl. 1), 238–248.[CrossRef]
    [Google Scholar]
  32. Nagahashi, S., Lussier, M. & Bussey, H. ( 1998; ). Isolation of Candida glabrata homologs of the Saccharomyces cerevisiae KRE9 and KNH1 genes and their involvement in cell wall beta-1,6-glucan synthesis. J Bacteriol 180, 5020-5029.
    [Google Scholar]
  33. Nakayama, H., Izuta, M., Nagahashi, S., Sihta, E. Y., Sato, Y., Yamazaki, T., Arisawa, M. & Kitada, K. ( 1998; ). A controllable gene-expression system for the pathogenic fungus Candida glabrata. Microbiology 144, 2407-2415.[CrossRef]
    [Google Scholar]
  34. Nakazawa, T., Horiuchi, H., Ohta, A. & Takagi, M. ( 1998; ). Isolation and characterization of EPD1, an essential gene for pseudohyphal growth of a dimorphic yeast, Candida maltosa. J Bacteriol 180, 2079-2086.
    [Google Scholar]
  35. Nakazawa, T., Takahashi, M., Horiuchi, H., Ohta, A. & Takagi, M. ( 2000; ). Cloning and characterization of EPD2, a gene required for efficient pseudohyphal formation of a dimorphic yeast, Candida maltosa. Biosci Biotechnol Biochem 64, 369-377.[CrossRef]
    [Google Scholar]
  36. Nielsen, H., Engelbrecht, J., Brunak, S. & von Heijne, G. ( 1997; ). Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10, 1-6.[CrossRef]
    [Google Scholar]
  37. Nuoffer, C., Jeno, P., Conzelmann, A. & Riezman, H. ( 1991; ). Determinants for glycophospholipid anchoring of the Saccharomyces cerevisiae GAS1 protein to the plasma membrane. Mol Cell Biol 11, 27-37.
    [Google Scholar]
  38. Pfaller, M. A., Jones, R. N., Doern, G. V., Sader, H. S., Hollis, R. J. & Messer, S. A. ( 1998; ). International surveillance of bloodstream infections due to Candida species: frequency of occurrence and antifungal susceptibilities of isolates collected in 1997 in the United States, Canada, and South America for the SENTRY program. J Clin Microbiol 36, 1886-1889.
    [Google Scholar]
  39. Popolo, L., Vai, M., Gatti, E., Porello, S., Bonfante, P., Balestrini, R. & Alberghina, L. ( 1993; ). Physiological analysis of mutants indicates involvement of the Saccharomyces cerevisiae GPI-anchored protein gp115 in morphogenesis and cell separation. J Bacteriol 175, 1879-1885.
    [Google Scholar]
  40. Popolo, L., Gilardelli, D., Bonfante, P. & Vai, M. ( 1997; ). Increase in chitin as an essential response to defects in assembly of cell wall polymers in the ggp1delta mutant of Saccharomyces cerevisiae. J Bacteriol 179, 463-469.
    [Google Scholar]
  41. Ram, A. F., Kapteyn, J. C., Montijn, R. C., Caro, L. H., Douwes, J. E., Baginsky, W., Mazur, P., van den Ende, H. & Klis, F. M. ( 1998; ). Loss of the plasma membrane-bound protein Gas1p in Saccharomyces cerevisiae results in the release of beta1,3-glucan into the medium and induces a compensation mechanism to ensure cell wall integrity. J Bacteriol 180, 1418-1424.
    [Google Scholar]
  42. Ramon, A. M., Porta, A. & Fonzi, W. A. ( 1999; ). Effect of environmental pH on morphological development of Candida albicans is mediated via the PacC-related transcription factor encoded by PRR2. J Bacteriol 181, 7524-7530.
    [Google Scholar]
  43. Saporito-Irwin, S. M., Birse, C. E., Sypherd, P. S. & Fonzi, W. A. ( 1995; ). PHR1, a pH-regulated gene of Candida albicans, is required for morphogenesis. Mol Cell Biol 15, 601-613.
    [Google Scholar]
  44. Schorling, S. R., Korting, H. C., Frosch, M. & Mühlschlegel, F. ( 2000; ). The role of Candida dubliniensis in oral candidiasis in human immunodeficiency virus-infected individuals. Crit Rev Microbiol 26, 59-68.[CrossRef]
    [Google Scholar]
  45. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673-4680.[CrossRef]
    [Google Scholar]
  46. Vai, M., Popolo, L., Grandori, R., Lacana, E. & Alberghina, L. ( 1990; ). The cell cycle modulated glycoprotein GP115 is one of the major yeast proteins containing glycosylphosphatidylinositol. Biochim Biophys Acta 1038, 277-285.[CrossRef]
    [Google Scholar]
  47. Vai, M., Orlandi, I., Cavadini, P., Alberghina, L. & Popolo, L. ( 1996; ). Candida albicans homologue of GGP1/GAS1 gene is functional in Saccharomyces cerevisiae and contains the determinants for glycosylphosphatidylinositol attachment. Yeast 12, 361-368.[CrossRef]
    [Google Scholar]
  48. Vanden Bossche, H., Dromer, F., Improvisi, I., Lozano, C. M., Rex, J. H. & Sanglard, D. ( 1998; ). Antifungal drug resistance in pathogenic fungi. Med Mycol 36, 119-128.
    [Google Scholar]
  49. Vazquez, J. A., Dembry, L. M., Sanchez, V., Vazquez, M. A., Sobel, J. D., Dmuchowski, C. & Zervos, M. J. ( 1998; ). Nosocomial Candida glabrata colonization: an epidemiologic study. J Clin Microbiol 36, 421-426.
    [Google Scholar]
  50. Weig, M., Gross, U. & Mühlschlegel, F. ( 1998; ). Clinical aspects and pathogenesis of Candida infection. Trends Microbiol 6, 468-470.[CrossRef]
    [Google Scholar]
  51. Wilson, R. B., Davis, D. & Mitchell, A. P. ( 1999; ). Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions. J Bacteriol 181, 1868-1874.
    [Google Scholar]
  52. Zhou, P., Szczypka, M. S., Young, R. & Thiele, D. J. ( 1994; ). A system for gene cloning and manipulation in the yeast Candida glabrata. Gene 142, 135-140.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-8-2007
Loading
/content/journal/micro/10.1099/00221287-147-8-2007
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error