1887
Preview this article:
Zoom in
Zoomout

Out of the iron age: new insights into the critical role of manganese homeostasis in bacteria, Page 1 of 1

| /docserver/preview/fulltext/micro/147/7/1471709a-1.gif

There is no abstract available for this article.
Use the preview function to the left.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-7-1709
2001-07-01
2020-08-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/7/1471709a.html?itemId=/content/journal/micro/10.1099/00221287-147-7-1709&mimeType=html&fmt=ahah

References

  1. Abell L. M., Schineller J., Keck P. J., Villafranca J. J. 1995; Effect of metal-ligand mutations on phosphoryl transfer reactions catalyzed by Escherichia coli glutamine synthetase. Biochemistry34:16695–16702[CrossRef]
    [Google Scholar]
  2. Archibald F. 1986; Manganese: its acquisition by and function in the lactic acid bacteria. Crit Rev Microbiol13:63–109[CrossRef]
    [Google Scholar]
  3. Arigoni F., Guérout-Fleury A. M., Barák I., Stragier P. 1999; The SpoIIE phosphatase, the sporulation septum and the establishment of forespore-specific transcription in Bacillus subtilis : a reassessment. Mol Microbiol31:1407–1415[CrossRef]
    [Google Scholar]
  4. Barford D. 1996; Molecular mechanisms of the protein serine/threonine phosphatases. Trends Biochem Sci21:407–412[CrossRef]
    [Google Scholar]
  5. Barnard J. P., Stinson M. W. 1996; The alpha-hemolysin of Streptococcus gordonii is hydrogen peroxide. Infect Immun 64:3853–3857
    [Google Scholar]
  6. Bartsevich V. V., Pakrasi H. B. 1995; Molecular identification of an ABC transporter complex for manganese: analysis of a cyanobacterial mutant strain impaired in the photosynthetic oxygen evolution process. EMBO J14:1845–1853
    [Google Scholar]
  7. Bearden S. W., Perry R. D. 1999; The Yfe system of Yersinia pestis transports iron and manganese and is required for full virulence of plague. Mol Microbiol 32:403–414[CrossRef]
    [Google Scholar]
  8. Berry A. M., Paton J. C. 1996; Sequence heterogeneity of PsaA, a 37-kilodalton putative adhesin essential for virulence of Streptococcus pneumoniae. Infect Immun64:5255–5262
    [Google Scholar]
  9. Braun V., Killmann H. 1999; Bacterial solutions to the iron-supply problem. Trends Biochem Sci24:104–109[CrossRef]
    [Google Scholar]
  10. Bsat N., Herbig A., Casillas-Martinez L., Setlow P., Helmann J. D. 1998; Bacillus subtilis contains multiple Fur homologues: identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors. Mol Microbiol29:189–198[CrossRef]
    [Google Scholar]
  11. Burnette-Curley D., Wells V., Viscount H., Munro C. L., Fenno J. C., Fives-Taylor P., Macrina F. L. 1995; FimA, a major virulence factor associated with Streptococcus parasanguis endocarditis. Infect Immun 63:4669–4674
    [Google Scholar]
  12. Chander M., Setlow B., Setlow P. 1998; The enzymatic activity of phosphoglycerate mutase from gram-positive endospore-forming bacteria requires Mn2+ and is pH sensitive. Can J Microbiol44:759–767[CrossRef]
    [Google Scholar]
  13. Chao Y. P., Patnaik R., Roof W. D., Young R. F., Liao J. C. 1993; Control of gluconeogenic growth by pps and pck in Escherichia coli. J Bacteriol175:6939–6944
    [Google Scholar]
  14. Charney J., Fisher W. P., Hegarty C. P. 1951; Manganese as an essential element for sporulation in the genus Bacillus. J Bacteriol62:145–148
    [Google Scholar]
  15. Chen Y. W., Dekker E. E., Somerville R. L. 1995; Functional analysis of E. coli threonine dehydrogenase by means of mutant isolation and characterization. Biochim Biophys Acta1253:208–214[CrossRef]
    [Google Scholar]
  16. Cheton P. L., Archibald F. S. 1988; Manganese complexes and the generation and scavenging of hydroxyl free radicals. Free Radic Biol Med5:325–333[CrossRef]
    [Google Scholar]
  17. Christianson D. W. 1997; Structural chemistry and biology of manganese metalloenzymes. Prog Biophys Mol Biol67:217–252[CrossRef]
    [Google Scholar]
  18. Dintilhac A., Alloing G., Granadel C., Claverys J.-P. 1997; Competence and virulence of Streptococcus pneumoniae : Adc and PsaA mutants exhibit a requirement for Zn and Mn resulting from inactivation of putative ABC metal permeases. Mol Microbiol25:727–739[CrossRef]
    [Google Scholar]
  19. Doyle R. J. 1989; How cell walls of gram-positive bacteria interact with metal ions. In Metal Ions and Bacteria pp275–293 Edited by Beveridge T. J., Doyle R. J.. New York: Wiley;
    [Google Scholar]
  20. Escolar L., Pérez-Martı́n J., de Lorenzo V. 1999; Opening the iron box: transcriptional metalloregulation by the Fur protein. J Bacteriol181:6223–6229
    [Google Scholar]
  21. Fridovich I. 1995; Superoxide radical and superoxide dismutases. Annu Rev Biochem64:97–112[CrossRef]
    [Google Scholar]
  22. Gaballa A., Helmann J. D. 1998; Identification of a zinc-specific metalloregulatory protein, Zur, controlling zinc transport operons in Bacillus subtilis . J Bacteriol180:5815–5821
    [Google Scholar]
  23. Garcı́a-Domı́nguez M., Lopez-Maury L., Florencio F. J., Reyes J. C. 2000; A gene cluster involved in metal homeostasis in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol182:1507–1514[CrossRef]
    [Google Scholar]
  24. Gerlach D., Reichardt W., Vettermann S. 1998; Extracellular superoxide dismutase from Streptococcus pyogenes type 12 strain is manganese-dependent. FEMS Microbiol Lett160:217–224[CrossRef]
    [Google Scholar]
  25. Gibson C. M., Caparon M. G. 1996; Insertional inactivation of Streptococcus pyogenes sod suggests that prtF is regulated in response to a superoxide signal. J Bacteriol178:4688–4695
    [Google Scholar]
  26. Gould G. W. 1969; Germination. In The Bacterial Spore pp397–444 Edited by Gould G. W., Hurst A.. London: Academic Press;
    [Google Scholar]
  27. Gruenheid S., Gros P. 2000; Genetic susceptibility to intracellular infections: Nramp1, macrophage function and divalent cations transport. Curr Opin Microbiol3:43–48[CrossRef]
    [Google Scholar]
  28. Hao Z., Chen S., Wilson D. B. 1999; Cloning, expression and characterization of cadmium and manganese uptake genes from Lactobacillus plantarum . Appl Environ Microbiol65:4746–4752
    [Google Scholar]
  29. Henriques A. O., Melsen L. R., Moran C. P. J. 1998; Involvement of superoxide dismutase in spore coat assembly in Bacillus subtilis. J Bacteriol 180:2285–2291
    [Google Scholar]
  30. Holmes R. K. 2000; Biology and molecular epidemiology of diphtheria toxin and the tox gene. J Infect Dis181:S156–S167[CrossRef]
    [Google Scholar]
  31. Hosfield D. J., Guan Y., Haas B. J., Cunningham R. P., Tainer J. A. 1999; Structure of the DNA repair enzyme endonuclease IV and its DNA complex: double-nucleotide flipping at abasic sites and three-metal-ion catalysis. Cell98:397–408[CrossRef]
    [Google Scholar]
  32. Inaoka T., Matsumura Y., Tsuchido T. 1999; SodA and manganese are essential for resistance to oxidative stress in growing and sporulating cells of Bacillus subtilis. J Bacteriol181:1939–1943
    [Google Scholar]
  33. Jakubovics N. S., Smith A. W., Jenkinson H. F. 2000; Expression of the virulence-related Sca (Mn2+) permease in Streptococcus gordonii is regulated by a diphtheria toxin metallorepressor-like protein ScaR. Mol Microbiol38:140–153[CrossRef]
    [Google Scholar]
  34. Janulczyk R., Pallon J, Björk L. 1999; Identification and characterization of a Streptococcus pyogenes ABC transporter with multiple specificity for metal cations. Mol Microbiol34:596–606[CrossRef]
    [Google Scholar]
  35. Jenkinson H. F. 1994; Cell surface protein receptors in oral streptococci . FEMS Microbiol Lett121133–140[CrossRef]
    [Google Scholar]
  36. Jiang Y. X., Murray B. E., Weinstock G. M. 1997; Enterococcus faecalis antigens in human infections. Infect Immun65:4207–4215
    [Google Scholar]
  37. Kehres D. G., Zaharik M. L., Finlay B. B., Maguire M. E. 2000; The NRAMP proteins of Salmonella typhimurium and Escherichia coli are selective manganese transporters involved in the response to reactive oxygen. Mol Microbiol36:1085–1100[CrossRef]
    [Google Scholar]
  38. King K. Y., Horenstein J. A., Caparon M. G. 2000; Aerotolerance and peroxide resistance in peroxidase and PerR mutants of Streptococcus pyogenes. J Bacteriol182:5290–5299[CrossRef]
    [Google Scholar]
  39. King N., Dreesen O., Stragier P., Pogliano K., Losick R. 1999; Septation, dephosphorylation, and the activation of σF during sporulation in Bacillus subtilis. Genes Dev13:1156–1167[CrossRef]
    [Google Scholar]
  40. Kitten T., Munro C. L., Michalek S. M., Macrina F. L. 2000; Genetic characterization of a Streptococcus mutans LraI family operon and role in virulence. Infect Immun 68:4441–4451[CrossRef]
    [Google Scholar]
  41. Kolenbrander P. E., Andersen R. N., Ganeshkumar N. 1994; Nucleotide sequence of the Streptococcus gordonii PK488 coaggregation adhesin gene, scaA , and ATP-binding cassette. Infect Immun62:4469–4480
    [Google Scholar]
  42. Kolenbrander P. E., Andersen R. N., Baker R. A., Jenkinson H. F. 1998; The adhesion-associated sca operon in Streptococcus gordonii encodes an inducible high-affinity ABC transporter for Mn2+ uptake. J Bacteriol180:290–295
    [Google Scholar]
  43. Krachler M., Rossipal E., Micetic-Turk D. 1999; Concentrations of trace elements in sera of newborns, young infants, and adults. Biol Trace Elem Res68:121–135[CrossRef]
    [Google Scholar]
  44. Kroos L., Zhang B., Ichikawa H., Yu Y. T. 1999; Control of σ factor activity during Bacillus subtilis sporulation. Mol Microbiol31:1285–1294[CrossRef]
    [Google Scholar]
  45. Kuhn N. J., Ward S. 1998; Purification, properties, and multiple forms of a manganese-activated inorganic pyrophosphatase from Bacillus subtilis. Arch Biochem Biophys 354:47–56[CrossRef]
    [Google Scholar]
  46. Kuhn N. J., Setlow B., Setlow P., Cammack R., Williams R. 1995; Cooperative manganese (II) activation of 3-phosphoglycerate mutase of Bacillus megaterium : a biological pH-sensing mechanism in bacterial spore formation and germination. Arch Biochem Biophys320:35–42[CrossRef]
    [Google Scholar]
  47. Kuo C. F., Mashino T., Fridovich I. 1987; α,β-Dihydroxyisovalerate dehydratase. A superoxide-sensitive enzyme. J Biol Chem262:4724–4727
    [Google Scholar]
  48. Lawrence M. C., Pilling P. A., Epa V. C., Berry A. M., Ogunniyi A. D., Paton J. C. 1998; The crystal structure of the pneumococcal surface antigen PsaA reveals a metal binding site and a novel structure for a putative ABC-type binding protein. Structure6:1553–1561[CrossRef]
    [Google Scholar]
  49. Loukin S., Kung C. 1995; Manganese effectively supports yeast cell-cycle progression in place of calcium. J Cell Biol131:1025–1037[CrossRef]
    [Google Scholar]
  50. Miller R. A., Britigan B. E. 1997; Role of oxidants in microbial pathophysiology. Clin Microbiol Rev10:1–18
    [Google Scholar]
  51. Missiakas D., Raina S. 1997; Signal transduction pathways in response to protein misfolding in the extracytoplasmic compartments of E. coli : role of two new phosphoprotein phosphatases PrpA and PrpB. EMBO J16:1670–1685[CrossRef]
    [Google Scholar]
  52. Morgan T. R., Shand J. A., Clarke S. M., Eaton-Rye J. J. 1998; Specific requirements for cytochrome c -550 and the manganese-stabilizing protein in photoautotrophic strains of Synechocystis sp. PCC 6803 with mutations in the domain Gly-351 to Thr-436 of the chlorophyll-binding protein CP47. Biochemistry37:14437–14449[CrossRef]
    [Google Scholar]
  53. Mukhopadhyay B., Stoddard S. F., Wolfe R. S. 1998; Purification, regulation, and molecular and biochemical characterization of pyruvate carboxylase from Methanobacterium thermoautotrophicum strain ΔH . J Biol Chem273:5155–5166[CrossRef]
    [Google Scholar]
  54. Neidhart D. J., Kenyon G. L., Gerlt J. A., Petsko G. A. 1990; Mandelate racemase and muconate lactonizing enzyme are mechanistically distinct and structurally homologous. Nature 347:692–694[CrossRef]
    [Google Scholar]
  55. Niven D. F., Ekins A., Al-Sumaurai A. A.-W. 1999; Effects of iron and manganese availability on growth and production of superoxide dismutase by Streptococcus suis . Can J Microbiol45:1027–1032[CrossRef]
    [Google Scholar]
  56. Ohtani N., Haruki M., Muroya A., Morikawa M., Kanaya S. 2000; Characterization of ribonuclease HII from Escherichia coli overproduced in a soluble form. J Biochem 127:895–899[CrossRef]
    [Google Scholar]
  57. Pancholi V., Fischetti V. A. 1998; α-Enolase, a novel strong plasmin(ogen) binding protein on the surface of pathogenic streptococci. J Biol Chem273:14503–14515[CrossRef]
    [Google Scholar]
  58. Pericone C. D., Overweg K., Hermans P. W., Weiser J. N. 2000; Inhibitory and bactericidal effects of hydrogen peroxide production by Streptococcus pneumoniae on other inhabitants of the upper respiratory tract. Infect Immun68:3990–3997[CrossRef]
    [Google Scholar]
  59. Pierre J. L., Fontecave M. 1999; Iron and activated oxygen species in biology: the basic chemistry. Biometals 12:195–199[CrossRef]
    [Google Scholar]
  60. Posey J. E., Gherardini F. C. 2000; Lack of a role for iron in the Lyme disease pathogen. Science288:1651–1653[CrossRef]
    [Google Scholar]
  61. Posey J. E., Hardham J. M., Norris S. J., Gherardini F. C. 1999; Characterization of a manganese-dependent regulatory protein, TroR, from Treponema pallidum. Proc Natl Acad Sci USA96:10887–10892[CrossRef]
    [Google Scholar]
  62. Que Q., Helmann J. D. 2000; Manganese homeostasis in Bacillus subtilis is regulated by MntR, a bifunctional regulator related to the diphtheria toxin repressor family of proteins. Mol Microbiol35:1454–1468
    [Google Scholar]
  63. Rao N. N., Liu S., Kornberg A. 1998; Inorganic polyphosphate in Escherichia coli : the phosphate regulon and the stringent response. J Bacteriol180:2186–2193
    [Google Scholar]
  64. Robbe-Saule V., Coynault C., Ibanez-Ruiz M., Hermant D., Norel F. 2001; Identification of a non-haem catalase in Salmonella and its regulation by RpoS (σS. Mol Microbiol39:1533–1545[CrossRef]
    [Google Scholar]
  65. Schroeter R., Schlisio S., Lucet I., Yudkin M., Borriss R. 1999; The Bacillus subtilis regulator protein SpoIIE shares functional and structural similarities with eukaryotic protein phosphatases 2C. FEMS Microbiol Lett174:117–123[CrossRef]
    [Google Scholar]
  66. Seemann J. E., Schulz G. E. 1997; Structure and mechanism of l-fucose isomerase from Escherichia coli. J Mol Biol273:256–268[CrossRef]
    [Google Scholar]
  67. Sekowska A., Danchin A., Risler J. L. 2000; Phylogeny of related functions: the case of polyamine biosynthetic enzymes. Microbiology146:1815–1828
    [Google Scholar]
  68. Silver S. 1996; Bacterial resistances to toxic metal ions – a review. Gene179:9–19[CrossRef]
    [Google Scholar]
  69. Silver S., Lusk J. E. 1987; Bacterial magnesium, manganese and zinc transport. In Ion Transport in Prokaryotes pp165–180 Edited by Rosen B. P., Silver S.. London: Academic Press;
    [Google Scholar]
  70. Singh K. V., Coque T. M., Weinstock G. M., Murray B. E. 1998; In vivo testing of an Enterococcus faecalis efaA mutant and use of efaA homologs for species identification. FEMS Immunol Med Microbiol21: 323–331[CrossRef]
    [Google Scholar]
  71. Singh V. K., Xiong A., Usgaard T. R., Chakrabarti S., Deora R., Misra T. K., Jayaswal R. K. 1999; ZntR is an autoregulatory protein and negatively regulates the chromosomal zinc resistance operon znt of Staphylococcus aureus . Mol Microbiol33:200–207[CrossRef]
    [Google Scholar]
  72. Spatafora G., Moore M. 1998; Growth of Streptococcus mutans in an iron-limiting medium . Methods. Cell Sci20:217–221[CrossRef]
    [Google Scholar]
  73. Stadtman E. R., Berlett B. S., Chock P. B. 1990; Manganese-dependent disproportionation of hydrogen peroxide in bicarbonate buffer . Proc Natl Acad Sci USA. 87384–388[CrossRef]
  74. Storz G., Imlay J. A. 1999; Oxidative stress . Curr. Opin Microbiol2:188–194[CrossRef]
    [Google Scholar]
  75. Stoyanov J. V., Hobman J. L., Brown N. L. 2001; CueR (Ybbl) of Escherichia coli is a MerR family regulator controlling expression of the copper exporter CopA. Mol Microbiol39:502–511[CrossRef]
    [Google Scholar]
  76. Thelwell C., Robinson N. J., Turner-Cavet J. S. 1998; An SmtB-like repressor from Synechocystis PCC 6803 regulates a zinc exporter. Proc Natl Acad Sci USA95:10728–10733[CrossRef]
    [Google Scholar]
  77. Thompson J., Ruvinov S. B., Freedberg D. I., Hall B. G. 1999; Cellobiose-6-phosphate hydrolase (CelF) of Escherichia coli : characterization and assignment to the unusual family 4 of glycosylhydrolases. J Bacteriol181:7339–7345
    [Google Scholar]
  78. Touati D. 2000; Iron and oxidative stress in bacteria . Arch Biochem Biophys. 3731–6[CrossRef]
  79. Whittaker M. M., Barynin V. V., Antonyuk S. V., Whittaker J. W. 1999; The oxidized (3,3) state of manganese catalase. Comparison of enzymes from Thermus thermophilus and Lactobacillus plantarum. Biochemistry 389126–9136[CrossRef]
  80. Yesilkaya H., Kadioglu A., Gingles N., Alexander J. E., Mitchell T. J., Andrew P. W. 2000; Role of manganese-containing superoxide dismutase in oxidative stress and virulence of Streptococcus pneumoniae. Infect Immun68:2819–2826[CrossRef]
    [Google Scholar]
  81. Yocum C. F., Pecoraro V. L. 1999; Recent advances in the understanding of the biological chemistry of manganese . Curr Opin Chem Biol. 3182–187[CrossRef]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-7-1709
Loading
/content/journal/micro/10.1099/00221287-147-7-1709
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error