1887

Abstract

Fluorescent pseudomonads produce yellow-green siderophores when grown under conditions of iron starvation. Here, the characterization of the gene, which is required for synthesis of the siderophore pyoverdine by strain PAO1, is described. A mutant was constructed and found to be defective for production of pyoverdine, demonstrating the involvement of PvdF in pyoverdine synthesis. Transcription analysis showed that expression of was regulated by the amount of iron in the growth medium, consistent with its role in siderophore production. DNA sequencing showed that gives rise to a protein of 31 kDa that has similarity with glycinamide ribonucleotide transformylase (GART) enzymes involved in purine synthesis from a wide range of eukaryotic and prokaryotic species. Chemical analyses of extracts from wild-type and mutant bacteria indicated that the PvdF enzyme catalyses the formylation of -hydroxyornithine to give rise to -formyl- -hydroxyornithine, a component of pyoverdine. These studies enhance understanding of the enzymology of pyoverdine synthesis, and to the best of the authors’ knowledge provide the first example of involvement of a GART-type enzyme in synthesis of a secondary metabolite.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-6-1517
2001-06-01
2021-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/6/1471517a.html?itemId=/content/journal/micro/10.1099/00221287-147-6-1517&mimeType=html&fmt=ahah

References

  1. Abdallah M. A. 1991; Pyoverdines and pseudobactins. In Handbook of Microbial Iron Chelates pp 139–153 Edited by Winkelmann G. Boca Raton, FL: CRC Press;
    [Google Scholar]
  2. Almassy R. J., Janson C., Akan C.-C., Hostomska Z. 1992; Structures of apo and complexed Escherichia coli glycinamide ribonucleotide transformylase. Proc Natl Acad Sci USA 89:6114–6118 [CrossRef]
    [Google Scholar]
  3. Altschul S. F., Stephen F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  4. Buchanan J. M., Hartman S. C. 1959; Enzymic reactions in the synthesis of the purines. Adv Enzymol 21:199–256
    [Google Scholar]
  5. Budzikiewicz H. 1993; Secondary metabolites from fluorescent pseudomonads. FEMS Microbiol Rev 104:209–228 [CrossRef]
    [Google Scholar]
  6. Casabadan M. J., Cohen S. N. 1980; Analysis of gene control signals by DNA fusion and cloning in Escherichia coli cells. Gene 6:23–28
    [Google Scholar]
  7. Chen P., Schulze-Gahmen U., Stura E. A., Inglese J., Johnson D. L., Marolewski A., Benkovic S. J., Wilson I. A. 1992; Crystal structure of glycinamide ribonucleotide transformylase from Escherichia coli at 3·0 Å resolution. J Mol Biol 227:283–292 [CrossRef]
    [Google Scholar]
  8. Chen W., Kuo T. 1993; A simple and rapid method for the preparation of Gram-negative bacterial genomic DNA. Nucleic Acids Res 21:2260 [CrossRef]
    [Google Scholar]
  9. Cunliffe H. E., Merriman T. R., Lamont I. L. 1995; Cloning and characterization of pvd S, a gene required for pyoverdine synthesis in Pseudomonas aeruginosa : PvdS is probably an alternative sigma factor. J Bacteriol 177:2744–2750
    [Google Scholar]
  10. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395 [CrossRef]
    [Google Scholar]
  11. Drechsel H., Winkelmann G. 1997; Iron chelation and siderophores. In Transition Metals in Microbial Metabolism pp 1–49 Edited by Winklemann G. Carrano C. J. Amsterdam: Harwood Academic;
    [Google Scholar]
  12. Ebbole D. J., Zalkin H. 1987; Cloning and characterization of a 12-gene cluster from Bacillus subtilis encoding nine enzymes for de novo purine nucleotide synthesis . . J Biol Chem 262:8274–8287
    [Google Scholar]
  13. Essar D. W., Eberly L., Hadero A., Crawford I. P. 1990; Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa : interchangeability of anthranilate synthases and evolutionary implications. J Bacteriol 172:884–900
    [Google Scholar]
  14. Figurski D. H., Helinski D. R. 1979; Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. . Proc Natl Acad Sci USA 76:1648–1652 [CrossRef]
    [Google Scholar]
  15. Gibson F., McGrath D. I. 1970; The isolation and characterisation of a hydroxamic acid (aerobactin) formed by Aerobacter aerogenes. . Biochim Biophys Acta 192:175–184
    [Google Scholar]
  16. Gillam A. H., Lewis A. G., Andersen R. J. 1971; Quantitative determination of hydroxamic acids. Anal Chem 53:841–844
    [Google Scholar]
  17. Greasley S. E., Yamshita M. M., Cai H., Benkovic S. J., Boger D. L., Wilson I. A. 1999; New insights into inhibitor design from the crystal structure and NMR studies of Escherichia coli GAR transformylase in complex with beta-GAR and 10-formyl-5,8,10-tridezfolic acid. Biochemistry 21:16783–16793
    [Google Scholar]
  18. Henikoff S. 1986; The Saccharomyces cerevisiae ADE5,7 protein is homologous to overlapping Drosophila melanogaster Gart polypeptides. J Mol Biol 190:519–528 [CrossRef]
    [Google Scholar]
  19. Henikoff S., Eghtedarzadeh M. K. 1987; Conserved arrangement of nested genes at the Drosophila Gart locus. Genetics 117:711–725
    [Google Scholar]
  20. Hohnadel D., Haas D., Meyer J.-M. 1986; Mapping of mutations affecting pyoverdine production in Pseudomonas aeruginosa. . FEMS Microbiol Lett 36:195–199 [CrossRef]
    [Google Scholar]
  21. Holloway B. W. 1955; Genetic recombination in Pseudomonas aeruginosa. . J Gen Microbiol 13:572–581 [CrossRef]
    [Google Scholar]
  22. Kamen B. 1997; Folate and antifolate pharmacology. Semin Oncol 24 : Suppl. 18 30–39
    [Google Scholar]
  23. King E. O., Ward M. K., Raney D. E. 1954; Two simple media for the demonstration of pyocyanin and fluorescein. J Lab Clin Med 44:301–307
    [Google Scholar]
  24. Khosla C., Gokhale R. S., Jacobsen J. R., Cane D. E. 1999; Tolerance and specificity of polyketide synthases. Annu Rev Biochem 68:219–253 [CrossRef]
    [Google Scholar]
  25. Lehoux D. E., Sanschagrin F., Levesque R. C. 2000; Genomics of the 35-kb pvd locus and analysis of novel pvdIJK genes implicated in pyoverdine biosynthesis in Pseudomonas aeruginosa. . FEMS Microbiol Lett 190:141–146 [CrossRef]
    [Google Scholar]
  26. Leong J. 1986; Siderophores: their biochemistry and possible role in the biocontrol of plant pathogens. Annu Rev Plant Phytopathol 26:187–209
    [Google Scholar]
  27. Leoni L., Ciervo A., Orsi N., Visca P. 1996; Iron-regulated transcription of the pvd A gene in Pseudomonas aeruginosa : effect of Fur and PvdS on promoter activity. J Bacteriol 178:2299–2313
    [Google Scholar]
  28. Leoni L., Orsi N., De Lorenzo V., Visca P. 2000; Functional analysis of PvdS, an iron starvation sigma factor of Pseudomonas aeruginosa. . J Bacteriol 182:1481–1491 [CrossRef]
    [Google Scholar]
  29. McMorran B. J., Merriman M. E., Rombel I. T., Lamont I. L. 1996; Characterisation of the pvdE gene which is required for pyoverdine synthesis in Pseudomonas aeruginosa. . Gene 176:55–59 [CrossRef]
    [Google Scholar]
  30. Markie D., Hill D. F., Poulter R. 1986; The construction of a modified drug resistance cassette. Proc Otago Med School 64:69–70 [CrossRef]
    [Google Scholar]
  31. Merriman T. R., Lamont I. L. 1993; Construction and use of a self-cloning promoter probe vector for Gram-negative bacteria. Gene 126:17–23 [CrossRef]
    [Google Scholar]
  32. Merriman T. R., Merriman M. E., Lamont I. L. 1995; Nucleotide sequence of pvd D, a pyoverdine biosynthetic gene from Pseudomonas aeruginosa : PvdD has similarity to peptide synthetases. J Bacteriol 177:252–258
    [Google Scholar]
  33. Meyer J. M., Abdallah M. A. 1978; The fluorescent pigment of Pseudomonas fluorescens : biosynthesis, purification and physicochemical properties. J Microbiol 107:319–328
    [Google Scholar]
  34. Meyer J. M., Neely A., Stintzi A., Georges C., Holder I. A. 1996; Pyoverdin is essential for virulence of Pseudomonas aeruginosa. . Infect Immun 64:518–523
    [Google Scholar]
  35. Miyazaki H., Kato H., Nakazawa T., Tsuda M. 1995; A positive regulatory gene, pvd S, for expression of pyoverdine biosynthetic genes in Pseudomonas aeruginosa PAO. Mol Gen Genet 248:17–24 [CrossRef]
    [Google Scholar]
  36. Ochsner U. A., Johnson Z., Lamont I. L., Cunliffe H. E., Vasil M. L. 1996; Exotoxin A production in Pseudomonas aeruginosa requires the iron-regulated pvdS gene encoding an alternative sigma factor. Mol Microbiol 21:1019–1028 [CrossRef]
    [Google Scholar]
  37. Poole K., Neshat S., Krebes K., Heinrichs D. 1993; Cloning and nucleotide analysis of the ferripyoverdine receptor gene fpv A of Pseudomonas aeruginosa. . J Bacteriol 175:4597–4604
    [Google Scholar]
  38. Rombel I. T., Lamont I. L. 1992; DNA homology between siderophore genes from fluorescent pseudomonads. J Gen Microbiol 138:181–187 [CrossRef]
    [Google Scholar]
  39. Rombel I. T., McMorran B. J., Lamont I. L. 1995; Identification of a DNA sequence motif required for expression of iron-regulated genes in pseudomonads . . Mol Gen Genet 246:519–528 [CrossRef]
    [Google Scholar]
  40. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  41. Schnorr K. M., Nygaard P., Laloue M. 1994; Molecular characterization of. Arabidopsis thaliana cDNAs encoding three purine biosynthetic enzymes. Plant J 6:113–121 [CrossRef]
    [Google Scholar]
  42. Sharman G. J., Williams D. H., Ewing D. F., Ratledge C. 1995; Isolation, purification and structure of exochelin MS, the extracellular siderophore from Mycobacterium smegmatis. . Biochem J 305:187–196
    [Google Scholar]
  43. Shim J. H., Benkovic S. J. 1999; Catalytic mechanism of Escherichia coli glycinamide ribonucleotide transformylase probed by site-directed mutagenesis and pH-dependent studies. Biochem J 38:10024–10031 [CrossRef]
    [Google Scholar]
  44. Simon R., O’Connell M., Labes M., Pühler A. 1986; Plasmid vectors for the genetic analysis and manipulation of rhizobia and other gram-negative bacteria. Methods Enzymol 118:640–659
    [Google Scholar]
  45. Smith J. M., Daum H. A.III. 1987; Identification and nucleotide sequence of a gene encoding 5′-phosphoribosylglycinamide transformylase in Escherichia coli K-12. J Biol Chem 262:10565–10569
    [Google Scholar]
  46. Stephan H., Freund S., Beck W., Jung G., Meyer J. M., Winkelmann G. 1993; Ornibactins – a new family of siderophores from Pseudomonas.. Biometals 6:93–100
    [Google Scholar]
  47. Stintzi A., Johnson Z., Stonehouse M., Ochsner U., Meyer J. M., Vasil M., Poole K. 1999; The pvc gene cluster of Pseudomonas aeruginosa : role in synthesis of the pyoverdine chromophore and regulation by PtxR and PvdS. J Bacteriol 181:4118–4124
    [Google Scholar]
  48. Stover C. K., Pham X. Q., Erwin A. L. 28 other authors 2000; Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406:959–964 [CrossRef]
    [Google Scholar]
  49. Takimoto C. H. 1997; Antifolates in clinical development. Semin Oncol 24 : Suppl. 18 40–51
    [Google Scholar]
  50. Tsuda M., Miyazaki H., Nakazawa Y. 1995; Genetic and physical mapping of genes involved in pyoverdine production in Pseudomonas aeruginosa PAO. J Bacteriol 177:423–431
    [Google Scholar]
  51. Vasil M. L., Ochsner U. A., Johnson Z., Colmer J. A., Hamood A. N. 1998; The fur-regulated gene encoding the alternative sigma factory PvdS is required for iron-dependent expression of the LysR-type regulator ptxR in Pseudomonas aeruginosa. . J Bacteriol 180:6784–6788
    [Google Scholar]
  52. Visca P., Serino L., Orsi N. 1992; Isolation and characterization of Pseudomonas aeruginosa mutants blocked in the synthesis of pyoverdine. J Bacteriol 174:5727–5731
    [Google Scholar]
  53. Visca P., Ciervo A., Orsi N. 1994; Cloning and nucleotide sequence of the pvd A gene encoding the pyoverdine biosynthetic enzyme l-ornithine N 5-oxygenase in Pseudomonas aeruginosa. . J Bacteriol 176:1128–1140
    [Google Scholar]
  54. Warren M. S., Marolewski A. E., Benkovic S. J. 1996; A rapid screen of active site mutants in glycinamide ribonucleotide transformylase. Biochemistry 35:8855–8862 [CrossRef]
    [Google Scholar]
  55. West S. E., Iglewski B. H. 1988; Codon usage in Pseudomonas aeruginosa. . Nucleic Acids Res 16:9323–9335 [CrossRef]
    [Google Scholar]
  56. West S. E., Schweizer H. P., Dall C., Sample A. K., Runyen-Janecky L. J. 1994; Construction of improved Escherichia–Pseudomonas shuttle vectors derived from pUC18/19 and sequence of the region required for replication in P. aeruginosa. . Gene 128:81–86
    [Google Scholar]
  57. Wilson M. J., Lamont I. L. 2000; Characterization of an ECF sigma factor protein from Pseudomonas aeruginosa.. Biochem Biophys Res Commun 273:578–583 [CrossRef]
    [Google Scholar]
  58. Yager T. D. others von Hippel P. H. 1987; Transcript elongation and termination in Escherichia coli . In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology pp 1241–1275 Edited by Neidhart F. C. Washington DC: American Society for Microbiology;
    [Google Scholar]
  59. Zuber P., Marahiel M. A. 1997; Structure, function and regulation of genes encoding multidomain peptide synthetases. In Biotechnology of Antibiotics pp 187–216 Edited by Strohl W. R. New York: Marcel Dekker;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-6-1517
Loading
/content/journal/micro/10.1099/00221287-147-6-1517
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error