1887

Abstract

Comparative analysis of the conjugative transposons Tn from and Tn from , and the CW459(M) element from , has revealed that these tetracycline-resistance elements are closely related. All three elements contain the (M) resistance gene and have sequence similarity throughout their central region. However, they have very different integration/excision modules. Instead of the and genes that are found in Tn, Tn has a large resolvase gene, . The element encodes the putative Int459 protein, which is a member of the integrase family of site-specific recombinases but is not closely related to Int from Tn. Based on these studies it is concluded that the clostridial elements have a modular genetic organization and were derived independently from distinct mobile genetic elements.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-5-1243
2001-05-01
2020-09-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/5/1471243a.html?itemId=/content/journal/micro/10.1099/00221287-147-5-1243&mimeType=html&fmt=ahah

References

  1. Abraham L. J., Rood J. I. 1985; Cloning and analysis of the Clostridium perfringens tetracycline resistance plasmid, pCW3. Plasmid13:155–162[CrossRef]
    [Google Scholar]
  2. Abraham L. J., Wales A. J., Rood J. I. 1985; Worldwide distribution of the conjugative Clostridium perfringens tetracycline resistance plasmid, pCW3. Plasmid14:37–46[CrossRef]
    [Google Scholar]
  3. Abremski K. E., Hoess R. H. 1992; Evidence for a second conserved arginine residue in the integrase family of recombination proteins. Protein Eng5:87–91[CrossRef]
    [Google Scholar]
  4. Awad M. M., Rood J. I. 1997; Isolation of alpha-toxin, theta-toxin and kappa-toxin mutants of Clostridium perfringens by Tn 916 mutagenesis. Microb Pathog22:275–284[CrossRef]
    [Google Scholar]
  5. Bannam T. L., Crellin P. K., Rood J. I. 1995; Molecular genetics of the chloramphenicol-resistance transposon Tn 4451 from Clostridium perfringens : the TnpX site-specific recombinase excises a circular transposon molecule. Mol Microbiol16:535–551[CrossRef]
    [Google Scholar]
  6. Bartolome B., Jubete Y., Martinez E., de la Cruz F. 1991; Construction and properties of pACYC184-derived cloning vectors compatible with pBR322 and its derivatives. Gene102:75–78[CrossRef]
    [Google Scholar]
  7. Burdett V. 1991; Purification and characterization of Tet(M), a protein that renders ribosomes resistant to tetracycline. J Biol Chem15:2872–2877
    [Google Scholar]
  8. Caillaud F., Carlier C., Courvalin P. 1987; Physical analysis of the conjugative shuttle transposon Tn 1545 . Plasmid1:58–60
    [Google Scholar]
  9. Caparon M. G., Scott J. R. 1989; Excision and insertion of the conjugative transposon Tn 916 involves a novel recombination mechanism. Cell22:1027–1034
    [Google Scholar]
  10. Celli J., Trieu-Cuot P. 1998; Circularisation of Tn 916 is required for expression of the transposon-encoded transfer functions: characterisation of long tetracycline-inducible transcripts reading through the attachment site. Mol Microbiol28:103–117
    [Google Scholar]
  11. Courvalin P., Carlier C. 1987; Tn 1545 : a conjugative shuttle transposon. Mol Gen Genet206:259–264[CrossRef]
    [Google Scholar]
  12. Flannagan S. E., Zitzow L. A., Su Y. A., Clewell D. B. 1994; Nucleotide sequence of the 18 kb conjugative transposon Tn 916 from Enterococcus faecalis. Plasmid 32:350–354[CrossRef]
    [Google Scholar]
  13. Fletcher H. M., Daneo-Moore L. 1992; A truncated Tn 916 -like element in a clinical isolate of Enterococcus faecium . Plasmid27:155–160[CrossRef]
    [Google Scholar]
  14. Franke A. E., Clewell D. B. 1981; Evidence for a chromosome borne resistance transposon (Tn 916 ) in Streptococcus faecalis that is capable of ‘conjugal’ transfer in the absence of a plasmid. J Bacteriol145:494–502
    [Google Scholar]
  15. Hächler H.. Kayser F. H., Berger-Bächi B. 1987; Homology of a transferable tetracycline resistance determinant of Clostridium difficile with Streptococcus ( Enterococcus ) faecalis transposon Tn 916 . Antimicrob Agents Chemother31:1033–1038[CrossRef]
    [Google Scholar]
  16. Jaworski D. D., Clewell D. B. 1995; A functional origin of transfer ( oriT ) on the conjugative transposon Tn 916 . J Bacteriol177:6644–6651
    [Google Scholar]
  17. Jaworski D. D., Flannagan S. E., Clewell D. B. 1996; Analyses of traA, int-Tn, and xis-Tn mutations in the conjugative transposon Tn 916 in Enterococcus faecalis . Plasmid36:201–208[CrossRef]
    [Google Scholar]
  18. Kaufmann P., Lehmann Y., Meile L. 1996; Conjugative transposition of Tn 916 from Enterococcus faecalis and Escherichia coli into Clostridium perfringens . Syst Appl Microbiol19:35–39[CrossRef]
    [Google Scholar]
  19. Lu F., Churchward G. 1995; Tn 916 target DNA sequences bind the C-terminal domain of integrase protein with different affinities that correlate with transposon insertion frequency. J Bacteriol177:1938–1946
    [Google Scholar]
  20. Lyras D., Rood J. I. 1996; Genetic organization and distribution of tetracycline resistance determinants in Clostridium perfringens . Antimicrob Agents Chemother40:2500–2504
    [Google Scholar]
  21. Lyras D., Rood J. I. 2000; Transposition of Tn 4451 and Tn 4453 involves a circular intermediate that forms a promoter for the large resolvase, tnpX . Mol Microbiol38:588–601[CrossRef]
    [Google Scholar]
  22. Lyras D., Storie C., Huggins A. S., Crellin P. K., Bannam T. L., Rood J. I. 1998; Chloramphenicol resistance in Clostridium difficile is encoded on Tn 4453 transposons that are closely related to Tn 4451 from Clostridium perfringens . Antimicrob Agents Chemother23:784–786
    [Google Scholar]
  23. Mantsala P., Zalkin H. 1992; Cloning and sequence of Bacillus subtilis purA and guaA , involved in the conversion of IMP to AMP and GMP. J Bacteriol174:1883–1890
    [Google Scholar]
  24. Marra D., Scott J. R. 1999; Regulation of excision of the conjugative transposon Tn 916. Mol Microbiol. 31609–621[CrossRef]
  25. Martin P., Trieu-Cuot P., Courvalin P. 1986; Nucleotide sequence of the tetM tetracycline resistance determinant of the streptococcal conjugative shuttle transposon Tn 1545 . Nucleic Acids Res14:7047–7058[CrossRef]
    [Google Scholar]
  26. Mullany P., Wilks M., Lamb I., Clayton C., Wren B., Tabaqchali S. 1990; Genetic analysis of a tetracycline resistance determinant from Clostridium difficile and its conjugal transfer to and from Bacillus subtilis . J Gen Microbiol136:1343–1349[CrossRef]
    [Google Scholar]
  27. Mullany P., Wilks M., Tabaqchali S. 1991; Transfer of Tn 916 and Tn 916 ΔE into Clostridium difficile : demonstration of a hot-spot for these elements in the C. difficile genome. FEMS Microbiol Lett79:191–194
    [Google Scholar]
  28. Mullany P., Pallen M., Wilks M., Tabaqchali S. 1996; A Group II intron in a conjugative transposon from the Gram-positive bacterium, Clostridium difficile. Gene 174:145–150[CrossRef]
    [Google Scholar]
  29. Perreten V., Schwarz F., Cresta L., Boeglin M., Dasen G., Teuber M. 1997; Antibiotic resistance spread in food. Nature389:801–802
    [Google Scholar]
  30. Poyart-Salmeron C., Trieu-Cuot P., Carlier C., Courvalin P. 1990; The integration-excision system of the conjugative transposon Tn 1545 is structurally and functionally related to those of the lamboid phages. Mol Microbiol4:1513–1521[CrossRef]
    [Google Scholar]
  31. Rice L. B. 1998; Tn 916 family of conjugative transposons and dissemination of antimicrobial resistance determinants. Antimicrob Agents Chemother42:1871–1877
    [Google Scholar]
  32. Rood J. I. 1983; Transferable tetracycline resistance in Clostridium perfringens strains of porcine origin. Can J Microbiol29:1241–1246[CrossRef]
    [Google Scholar]
  33. Rood J. I., Maher E. A., Somers E. B., Campos E., Duncan C. L. 1978a; Isolation and characterization of multiply antibiotic-resistant Clostridium perfringens strains from porcine faeces. Antimicrob Agents Chemother13:871–880[CrossRef]
    [Google Scholar]
  34. Rood J. I., Scott V. N., Duncan C. L. 1978b; Identification of a transferable tetracycline resistance plasmid (pCW3) from Clostridium perfringens . Plasmid1:563–570[CrossRef]
    [Google Scholar]
  35. Rudy C. K., Scott J. R., Churchward G. 1997; DNA binding by the Xis protein of the conjugative transposon Tn 916. Nucleic Acids Res. 254061–4066[CrossRef]
  36. Sambrook J., Fritsch E. F., Maniatis T. 1989; Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  37. Scott J. R., Churchward G. G. 1995; Conjugative transposition. Annu Rev Microbiol49:367–397[CrossRef]
    [Google Scholar]
  38. Senghas E., Jones J. M., Yamamoto M., Gawron-Burke C., Clewell D. B. 1988; Genetic organization of the bacterial conjugative transposon Tn 916 . J Bacteriol170:245–249
    [Google Scholar]
  39. Sloan J., Warner T. A., Scott P. T., Bannam T. L., Berryman D. I., Rood J. I. 1992; Construction of a sequenced Clostridium perfringens-Escherichia coli shuttle plasmid. Plasmid27:207–219[CrossRef]
    [Google Scholar]
  40. Su Y. A., He P., Clewell D. B. 1992; Characterization of the tet (M) determinant of Tn 916 : evidence for regulation by transcription attenuation. Antimicrob Agents Chemother36:769–778[CrossRef]
    [Google Scholar]
  41. Swartley J. S., McAllister C. F., Hajjeh R. A., Heinrich D. W., Stephens D. S. 1993; Deletions of Tn 916 -like transposons are implicated in tetM- mediated resistance in pathogenic Neisseria. Mol Microbiol10:299–310[CrossRef]
    [Google Scholar]
  42. Teuber M., Meile L., Schwarz F. 1999; Acquired antibiotic resistance in lactic acid bacteria from food. Antonie Leeuwenhoek76:115–137[CrossRef]
    [Google Scholar]
  43. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res22:4673–4680[CrossRef]
    [Google Scholar]
  44. Voelker L. L., Dybvig K. 1998; Characterisation of the lysogenic bacteriophage MAV1 from Mycoplasma arthritidis. J Bacteriol 180:5928–5931
    [Google Scholar]
  45. Wang H., Mullany P. 2000; The large resolvase TndX is required and sufficient for the integration and excision of derivatives of the novel conjugative transposon Tn 5397. J Bacteriol 182:6577–6583[CrossRef]
    [Google Scholar]
  46. Wang H., Roberts A. P., Lyras D., Rood J. I., Wilks M., Mullany P. 2000a; Characterisation of the ends and target sites of the novel conjugative transposon Tn 5397 from Clostridium difficile : demonstration that excision and circularisation is mediated by TndX, a member of the large resolvase family . J Bacteriol182:3775–3783[CrossRef]
    [Google Scholar]
  47. Wang H., Roberts A., Mullany P. 2000b; DNA sequence of the insertional hot-spot of Tn 916 in the Clostridium difficile genome and discovery of a Tn 916 -like element in an environmental isolate integrated in the same hot spot. FEMS Microbiol Lett192:15–20[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-5-1243
Loading
/content/journal/micro/10.1099/00221287-147-5-1243
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error