1887
Preview this article:
Zoom in
Zoomout

Differential regulation of cell wall biogenesis during growth and development in yeast, Page 1 of 1

| /docserver/preview/fulltext/micro/147/4/1470781a-1.gif

There is no abstract available for this article.
Use the preview function to the left.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-4-781
2001-04-01
2020-04-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/4/1470781a.html?itemId=/content/journal/micro/10.1099/00221287-147-4-781&mimeType=html&fmt=ahah

References

  1. Alberts A. S., Bouquin N., Johnston L. H., Treisman R. 1998; Analysis of RhoA-binding proteins reveals an interaction domain conserved in heterotrimeric G protein β subunits and the yeast response regulator protein Skn7. J Biol Chem273:8616–8622[CrossRef]
    [Google Scholar]
  2. Andrews P. D., Stark M. J. R. 2000; Dynamic, Rho1p-dependent localization of Pkc1p to sites of polarized growth. J Cell Sci113:2685–2693
    [Google Scholar]
  3. Ayscough K. R., Eby J. J., Lila T., Dewar H., Kozminski K. G., Drubin D. G. 1999; Sla1p is a functionally modular component of the yeast cortical actin cytoskeleton required for correct localization of both Rho1p-GTPase and Sla2p, a protein with talin homology. Mol Biol Cell10:1061–1075[CrossRef]
    [Google Scholar]
  4. Banuett F. 1998; Signalling in the yeasts: an informational cascade with links to the filamentous fungi. Microbiol Mol Biol Rev62:249–274
    [Google Scholar]
  5. Barbet N. C., Schneider U., Helliwell S. B., Stansfield I., Tuite M. F., Hall M. N. 1996; TOR controls translation initiation and early G1 progression in yeast. Mol Biol Cell7:25–42[CrossRef]
    [Google Scholar]
  6. Bickle M., Delley P. A., Schmidt A., Hall M. N. 1998; Cell wall integrity modulates RHO1 activity via the exchange factor ROM2. EMBO J17:2235–2245[CrossRef]
    [Google Scholar]
  7. Cabib E., Drgon T., Drgonová J., Ford R. A., Kollár R. 1997; The yeast cell wall, a dynamic structure engaged in growth and morphogenesis. Biochem Soc Trans25:200–204
    [Google Scholar]
  8. Cabib E., Drgonová J., Drgon T. 1998; Role of small G proteins in yeast cell polarization and wall biosynthesis. Annu Rev Biochem67:307–333[CrossRef]
    [Google Scholar]
  9. Cappellaro C., Mrsa V., Tanner W. 1998; New potential cell wall glucanases of Saccharomyces cerevisiae and their involvement in mating. J Bacteriol180:5030–5037
    [Google Scholar]
  10. Chaffin W. L., Lopez-Ribot J. L., Casanova M., Gozalbo D., Martinez J. P. 1998; Cell wall and secreted proteins of Candida albicans : identification, function, and expression. Microbiol Mol Biol Rev62:130–180
    [Google Scholar]
  11. Choi W. J., Santos B., Duran A., Cabib E. 1994a; Are yeast chitin synthases regulated at the transcriptional or the posttranslational level?. Mol Cell Biol14:7685–7694
    [Google Scholar]
  12. Choi W. J., Sburlati A., Cabib E. 1994b; Chitin synthase 3 from yeast has zymogenic properties that depend on both the CAL1 and the CAL3 genes. Proc Natl Acad Sci USA91:4727–4730[CrossRef]
    [Google Scholar]
  13. Christodoulidou A., Briza P., Ellinger A., Bouriotis V. 1999; Yeast ascospore wall assembly requires two chitin deacetylase isozymes. FEBS Lett460:275–279[CrossRef]
    [Google Scholar]
  14. Chu S., DeRisi J., Eisen M., Mulholland J., Botstein D., Brown P. O., Herskowitz I. 1998; The transcriptional program of sporulation in budding yeast. Science282:699–705[CrossRef]
    [Google Scholar]
  15. Chuang J. S., Schekman R. W. 1996; Differential trafficking and timed localization of two chitin synthase proteins. Chs2p and Chs3p. J Cell Biol135:597–610[CrossRef]
    [Google Scholar]
  16. Delley P. A., Hall M. N. 1999; Cell wall stress depolarizes cell growth via hyperactivation of RHO1. J Cell Biol147:163–174[CrossRef]
    [Google Scholar]
  17. DeMarini D. J., Adams A. E., Fares H., De Virgilio C., Valle G., Chuang J. S., Pringle J. R. 1997; A septin-based hierarchy of proteins required for localized deposition of chitin in the Saccharomyces cerevisiae cell wall. J Cell Biol139:75–93[CrossRef]
    [Google Scholar]
  18. De Nobel J. G., Ruiz C., Martin H., Morris W., Brul S., Molina M., Klis F. M. 2000; Cell wall perturbation in yeast results in dual phosphorylation of the Slt2/Mpk1 MAP kinase and in an Slt2-mediated increase in FKS2 - lacZ expression, glucanase resistance and thermotolerance. Microbiology146:2121–2132
    [Google Scholar]
  19. Di Como C. J., Arndt K. T. 1996; Nutrients, via the Tor proteins, stimulate the association of Tap42 with type 2A phosphatases. Genes Dev10:1904–1916[CrossRef]
    [Google Scholar]
  20. Dodou E., Treisman R. 1997; The Saccharomyces cerevisiae MADS-box transcription factor Rlm1 is a target for the Mpk1 mitogen-activated protein kinase pathway. Mol Cell Biol17:1848–1859
    [Google Scholar]
  21. Drgonová, J., Drgon T., Roh D. H., Cabib E. 1999; The GTP-binding protein Rho1p is required for cell cycle progression and polarization of the yeast cell. J Cell Biol146:373–387[CrossRef]
    [Google Scholar]
  22. Erdman S., Lin L., Malczynski M., Snyder M. 1998; Pheromone-regulated genes required for yeast mating differentiation. J Cell Biol140:461–483[CrossRef]
    [Google Scholar]
  23. Gammie A. E., Brizzio V., Rose M. D. 1998; Distinct morphological phenotypes of cell fusion mutants. Mol Biol Cell9:1395–1410[CrossRef]
    [Google Scholar]
  24. Garcia-Rodriguez L. J., Trilla J. A., Castro C., Valdivieso M. H., Duran A., Roncero C. 2000; Characterization of the chitin biosynthesis process as a compensatory F mechanism in the fks1 mutant of Saccharomyces cerevisiae . FEBS Lett478:84–88[CrossRef]
    [Google Scholar]
  25. Goldman R. C., Sullivan P. A., Zakula D., Capobianco J. O. 1995; Kinetics of β-1,3 glucan interaction at the donor and acceptor sites of the fungal glucosyltransferase encoded by the BGL2 gene. Eur J Biochem227:372–378[CrossRef]
    [Google Scholar]
  26. Gray J. V., Ogas J. P., Kamada Y., Stone M., Levin D. E., Herskowitz I. 1997; A role for the Pkc1 MAP kinase pathway of Saccharomyces cerevisiae in bud emergence and identification of a putative upstream regulator. EMBO J16:4924–4937[CrossRef]
    [Google Scholar]
  27. Gustin M. C., Albertyn J., Alexander M., Davenport K. 1998; MAP kinase pathways in the yeast Saccharomyces cerevisiae . Microbiol Mol Biol Rev62:1264–1300
    [Google Scholar]
  28. Helliwell S. B., Howald I., Barbet N., Hall M. N. 1998a; TOR2 is part of two related signaling pathways coordinating cell growth in Saccharomyces cerevisiae . Genetics148:99–112
    [Google Scholar]
  29. Helliwell S. B., Schmidt A., Ohya Y., Hall M. N. 1998b; The Rho1 effector Pkc1, but not Bni1, mediates signaling from Tor2 to the actin cytoskeleton. Curr Biol8:1211–1214[CrossRef]
    [Google Scholar]
  30. Igual J. C., Johnson A. L., Johnston L. H. 1996; Coordinated regulation of gene expression by the cell cycle transcription factor Swi4 and the protein kinase C MAP kinase pathway for yeast cell integrity. EMBO J15:5001–5013
    [Google Scholar]
  31. Imamura H., Tanaka K., Hihara T., Umikawa M., Kamei T., Takahashi K., Sasaki T., Takai Y. 1997; Bni1p and Bnr1p: downstream targets of the Rho family small G-proteins which interact with profilin and regulate actin cytoskeleton in Saccharomyces cerevisiae . EMBO J16:2745–2755[CrossRef]
    [Google Scholar]
  32. Inoue S. B., Qadota H., Arisawa M., Watanabe T., Ohya Y. 1999; Prenylation of Rho1p is required for activation of yeast 1,3-β-glucan synthase. J Biol Chem274:38119–38124[CrossRef]
    [Google Scholar]
  33. Ivanovska I., Rose M. D. 2000; SLG1 plays a role during G1 in the decision to enter or exit the cell cycle. Mol Gen Genet262:1147–1156[CrossRef]
    [Google Scholar]
  34. Jacoby J. J., Nilius S. M., Heinisch J. J. 1998; A screen for upstream components of the yeast protein kinase C signal transduction pathway identifies the product of the SLG1 gene. Mol Gen Genet258:148–155[CrossRef]
    [Google Scholar]
  35. Jung U. S., Levin D. E. 1999; Genome-wide analysis of gene expression regulated by the yeast cell wall integrity signaling pathway. Mol Microbiol34:1049–1057[CrossRef]
    [Google Scholar]
  36. Kapteyn J. C., Van Den Ende H., Klis F. M. 1999a; The contribution of cell wall proteins to the organization of the yeast cell wall. Biochim Biophys Acta1426:373–383[CrossRef]
    [Google Scholar]
  37. Kapteyn J. C., Van Egmond P., Sievi E., Van Den Ende H., Makarow M., Klis F. M. 1999b; The contribution of the O -glycosylated protein Pir2p/Hsp150 to the construction of the yeast cell wall in wild-type cells and β 1,6-glucan-deficient mutants. Mol Microbiol31:1835–1844[CrossRef]
    [Google Scholar]
  38. Kapteyn J. C., Hoyer L. L., Hecht J. E., Muller W. H., Andel A., Verkleij A. J., Makarow M., Van Den Ende H., Klis F. M. 2000; The cell wall architecture of Candida albicans wild-type cells and cell wall-defective mutants. Mol Microbiol35:601–611
    [Google Scholar]
  39. Ketela T., Green R., Bussey H. 1999; Saccharomyces cerevisiae Mid2p is a potential cell wall stress sensor and upstream activator of the PKC1-MPK1 cell integrity pathway. J Bacteriol181:3330–3340
    [Google Scholar]
  40. Kim Y. J., Francisco L., Chen G. C., Marcotte E., Chan C. S. 1994; Control of cellular morphogenesis by the Ip12/Bem2 GTPase-activating protein: possible role of protein phosphorylation. J Cell Biol127:1381–1394[CrossRef]
    [Google Scholar]
  41. King L., Butler G. 1998; Ace2p, a regulator of CTS1 (chitinase) expression, affects pseudohyphal production in Saccharomyces cerevisiae . Curr Genet34:183–191[CrossRef]
    [Google Scholar]
  42. Klis F. M. 1994; Review: cell wall assembly in yeast. Yeast10:851–869[CrossRef]
    [Google Scholar]
  43. Kohno H., Tanaka K., Mino A.. 9 other authors 1996; Bni1p implicated in cytoskeletal control is a putative target of Rho1p small GTP binding protein in Saccharomyces cerevisiae . EMBO J15:6060–6068
    [Google Scholar]
  44. Kovacech B., Nasmyth K., Schuster T. 1996; EGT2 gene transcription is induced predominantly by Swi5 in early G1. Mol Cell Biol16:3264–3274
    [Google Scholar]
  45. Kubler E., Mosch H. U., Rupp S., Lisanti M. P. 1997; Gpa2p, a G-protein α-subunit, regulates growth and pseudohyphal development in Saccharomyces cerevisiae via a cAMP-dependent mechanism. J Biol Chem272:20321–20323[CrossRef]
    [Google Scholar]
  46. Kupiec M., Byers B., Esposito R. E., Mitchell A. P. 1997; Meiosis and sporulation in Saccharomyces cerevisiae . In The Molecular Biology of the Yeast Saccharomyces pp889–1036 Edited by Pringle J. R., Broach J. R., Jones E. W.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  47. Lambrechts M. G., Bauer F. F., Marmur J., Pretorius I. S. 1996; Muc1, a mucin-like protein that is regulated by Mss10, is critical for pseudohyphal differentiation in yeast. Proc Natl Acad Sci USA93:8419–8424[CrossRef]
    [Google Scholar]
  48. Lo H. J., Kohler J. R., DiDomenico B., Loebenberg D., Cacciapuoti A., Fink G. R. 1997; Nonfilamentous C. albicans mutants are avirulent. Cell90:939–949[CrossRef]
    [Google Scholar]
  49. Lo W. S., Dranginis A. M. 1998; The cell surface flocculin Flo11 is required for pseudohyphae formation and invasion by Saccharomyces cerevisiae . Mol Biol Cell9:161–171[CrossRef]
    [Google Scholar]
  50. Longtine M. S., DeMarini D. J., Valencik M. L., Al-Awar O. S., Fares H., De Virgilio C., Pringle J. R. 1996; The septins: roles in cytokinesis and other processes. Curr Opin Cell Biol8:106–119[CrossRef]
    [Google Scholar]
  51. Longtine M. S., Fares H., Pringle J. R. 1998; Role of the yeast Gin4p protein kinase in septin assembly and the relationship between septin assembly and septin function. J Cell Biol143:719–736[CrossRef]
    [Google Scholar]
  52. Lorenz M. C., Heitman J. 1997; Yeast pseudohyphal growth is regulated by GPA2 , a G protein α homolog. EMBO J16:7008–7018[CrossRef]
    [Google Scholar]
  53. Marsh L., Rose M. D. 1997; The pathway of cell and nuclear fusion during mating in S . cerevisiae . In The Molecular Biology of the Yeast Saccharomyces pp827–888 Edited by Pringle J. R., Broach J. R., Jones E. W.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  54. Martin H., Rodriguez-Pachon J. M., Ruiz C., Nombela C., Molina M. 2000; Regulatory mechanisms for modulation of signaling through the cell integrity Slt2-mediated pathway in Saccharomyces cerevisiae . J Biol Chem275:1511–1519[CrossRef]
    [Google Scholar]
  55. Mazur P., Morin N., Baginsky W., el-Sherbeini M., Clemas J. A., Nielsen J. B., Foor F. 1995; Differential expression and function of two homologous subunits of yeast 1,3-β-d-glucan synthase. Mol Cell Biol15:5671–5681
    [Google Scholar]
  56. Mosch H. U., Roberts R. L., Fink G. R. 1996; Ras2 signals via the Cdc42/Ste20/mitogen-activated protein kinase module to induce filamentous growth in Saccharomyces cerevisiae . Proc Natl Acad Sci USA93:5352–5356[CrossRef]
    [Google Scholar]
  57. Mouyna I., Fontaine T., Vai M., Monod M., Fonzi W. A., Diaquin M., Popolo L., Hartland R. P., Latge J. P. 2000; Glycosylphosphatidylinositol-anchored glucanosyltransferases play an active role in the biosynthesis of the fungal cell wall. J Biol Chem275:14882–14889[CrossRef]
    [Google Scholar]
  58. Ono N., Yabe T., Sudoh M., Nakajima T., Yamada-Okabe T., Arisawa M., Yamada-Okabe H. 2000; The yeast Chs4 protein stimulates the trypsin-sensitive activity of chitin synthase 3 through an apparent protein–protein interaction. Microbiology146:385–391
    [Google Scholar]
  59. Ono T., Suzuki T., Anraku Y., Iida H. 1994; The MID2 gene encodes a putative integral membrane protein with a Ca2+-binding domain and shows mating pheromone-stimulated expression in Saccharomyces cerevisiae . Gene151:203–208[CrossRef]
    [Google Scholar]
  60. Orlean P. 1997; Biogenesis of yeast wall and surface components. In The Molecular Biology of the Yeast Saccharomyces pp229–362 Edited by Pringle J. R., Broach J. R., Jones E. W.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  61. Osmond B. C., Specht C. A., Robbins P. W. 1999; Chitin synthase III: synthetic lethal mutants and ‘stress related’ chitin synthesis that bypasses the CSD3/CHS6 localization pathway. Proc Natl Acad Sci USA96:11206–11210[CrossRef]
    [Google Scholar]
  62. Ozaki K., Tanaka K., Imamura H., Hihara T., Kameyama T., Nonaka H., Hirano H., Matsuura Y., Takai Y. 1996; Rom1p and Rom2p are GDP/GTP exchange proteins (GEPs) for the Rho1p small GTP binding protein in Saccharomyces cerevisiae . EMBO J15:2196–2207
    [Google Scholar]
  63. Pan X., Heitman J. 1999; Cyclic AMP-dependent protein kinase regulates pseudohyphal differentiation in Saccharomyces cerevisiae . Mol Cell Biol19:4874–4887
    [Google Scholar]
  64. Rajavel M., Philip B., Buehrer B. M., Errede B., Levin D. E. 1999; Mid2 is a putative sensor for cell integrity signaling in Saccharomyces cerevisiae . Mol Cell Biol19:3969–3976
    [Google Scholar]
  65. Reif K., Nobes C. D., Thomas G., Hall A., Cantrell D. A. 1996; Phosphatidylinositol 3-kinase signals activate a selective subset of Rac/Rho-dependent effector pathways. Curr Biol6:1445–1455[CrossRef]
    [Google Scholar]
  66. Robertson L. S., Fink G. R. 1998; The three yeast A kinases have specific signaling functions in pseudohyphal growth. Proc Natl Acad Sci USA95:13783–13787[CrossRef]
    [Google Scholar]
  67. Rodriguez-Peña J. M.. Cid V. J., Arroyo J., Nombela C. 2000; A novel family of cell wall-related proteins regulated differently during the yeast life cycle. Mol Cell Biol20:3245–3255[CrossRef]
    [Google Scholar]
  68. Rupp S., Summers E., Lo H. J., Madhani H., Fink G. 1999; MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene. EMBO J18:1257–1269[CrossRef]
    [Google Scholar]
  69. Santos B., Snyder M. 1997; Targeting of chitin synthase 3 to polarized growth sites in yeast requires Chs5p and Myo2p. J Cell Biol136:95–110[CrossRef]
    [Google Scholar]
  70. Santos B., Duran A., Valdivieso M. H. 1997; CHS5 , a gene involved in chitin synthesis and mating in Saccharomyces cerevisiae . Mol Cell Biol17:2485–2496
    [Google Scholar]
  71. Schmidt A., Kunz J., Hall M. N. 1996; TOR2 is required for organization of the actin cytoskeleton in yeast. Proc Natl Acad Sci USA93:13780–13785[CrossRef]
    [Google Scholar]
  72. Schmidt A., Bickle M., Beck T., Hall M. N. 1997; The yeast phosphatidylinositol kinase homolog TOR2 activates RHO1 and RHO2 via the exchange factor ROM2. Cell88:531–542[CrossRef]
    [Google Scholar]
  73. Smits G. J., Kapteyn J. C., Van Den Ende H., Klis F. M. 1999; Cell wall dynamics in yeast. Curr Opin Microbiol2:348–352[CrossRef]
    [Google Scholar]
  74. Spellman P. T., Sherlock G., Zhang M. Q., Iyer V. R., Anders K., Eisen M. B., Brown P. O., Botstein D., Futcher B. 1998; Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell9:3273–3297[CrossRef]
    [Google Scholar]
  75. Trilla J. A., Cos T., Duran A., Roncero C. 1997; Characterization of CHS4 ( CAL2 ), a gene of Saccharomyces cerevisiae involved in chitin biosynthesis and allelic to SKT5 and CSD4 . Yeast13:795–807[CrossRef]
    [Google Scholar]
  76. Trilla J. A., Duran A., Roncero C. 1999; Chs7p, a new protein involved in the control of protein export from the endoplasmic reticulum that is specifically engaged in the regulation of chitin synthesis in Saccharomyces cerevisiae . J Cell Biol145:1153–1163[CrossRef]
    [Google Scholar]
  77. Valdivieso M. H., Ferrario L., Vai M., Duran A., Popolo L. 2000; Chitin synthesis in a gas1 mutant of Saccharomyces cerevisiae . J Bacteriol182:4752–4757[CrossRef]
    [Google Scholar]
  78. Verna J., Lodder A., Lee K., Vagts A., Ballester R. 1997; A family of genes required for maintenance of cell wall integrity and for the stress response in Saccharomyces cerevisiae . Proc Natl Acad Sci USA94:13804–13809[CrossRef]
    [Google Scholar]
  79. Wagner M., Briza P., Pierce M., Winter E. 1999; Distinct steps in yeast spore morphogenesis require distinct SMK1 MAP kinase thresholds. Genetics151:1327–1340
    [Google Scholar]
  80. Watanabe Y., Takaesu G., Hagiwara M., Irie K., Matsumoto K. 1997; Characterization of a serum response factor-like protein in Saccharomyces cerevisiae , Rlm1, which has transcriptional activity regulated by the Mpk1 (Slt2) mitogen-activated protein kinase pathway. Mol Cell Biol17:2615–2623
    [Google Scholar]
  81. Zhao C., Jung U. S., Garrett-Engele P., Roe T., Cyert M. S., Levin D. E. 1998; Temperature-induced expression of yeast FKS2 is under the dual control of protein kinase C and calcineurin. Mol Cell Biol18:1013–1022
    [Google Scholar]
  82. Ziman M., Chuang J. S., Schekman R. W. 1996; Chs1p and Chs3p, two proteins involved in chitin synthesis, populate a compartment of the Saccharomyces cerevisiae endocytic pathway. Mol Biol Cell7:1909–1919[CrossRef]
    [Google Scholar]
  83. Ziman M., Chuang J. S., Tsung M., Hamamoto S., Schekman R. 1998; Chs6p-dependent anterograde transport of Chs3p from the chitosome to the plasma membrane in Saccharomyces cerevisiae . Mol Biol Cell9:1565–1576[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-4-781
Loading
/content/journal/micro/10.1099/00221287-147-4-781
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error