1887

Abstract

In the operon involved in glycolate utilization is located at 673 min and formed by genes encoding the enzymes glycolate oxidase () and malate synthase G (). Their expression from a single promoter upstream of is induced by growth on glycolate and regulated by the activator encoded by the divergently transcribed gene . Gene , located 350 bp downstream of , encodes a hydrophobic protein highly similar to the L-lactate permease encoded by . Expression studies have shown that the gene (proposed name ) is transcribed from the same promoter as the other structural genes and thus belongs to the operon. Characterization of a :: mutant showed that GlcA acts as glycolate permease and that glycolate can also enter the cell through another transport system. Evidence is presented of the involvement of L-lactate permease in glycolate uptake. Growth on this compound was abolished in a double mutant of the paralogous genes and , and restored with plasmids expressing either GlcA or LldP. Characterization of the putative substrates for these two related permeases showed, in both cases, specificity for the 2-hydroxymonocarboxylates glycolate, L-lactate and D-lactate. Although both GlcA and LldP recognize D-lactate, mutant analysis proved that L-lactate permease is mainly responsible for its uptake.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-4-1069
2001-04-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/4/1471069a.html?itemId=/content/journal/micro/10.1099/00221287-147-4-1069&mimeType=html&fmt=ahah

References

  1. Bandell, M., Ansanay, V., Rachidi, N., Dequin, S. & Lolkema, J. S. ( 1997; ). Membrane potential-generating malate (MleP) and citrate (CitP) transporters of lactic acid bacteria are homologous proteins. Substrate specificity of the 2-hydroxycarboxylate transporter family. J Biol Chem 272, 18140-18146.[CrossRef]
    [Google Scholar]
  2. Belasco, J. G., Beatty, T., Adams, C. W., von Gabain, A. & Cohen, S. N. ( 1985; ). Differential expression of photosynthesis genes in R. capsulata results from segmental differences in stability within the polycistronic rxcA transcript. Cell 40, 171-181.[CrossRef]
    [Google Scholar]
  3. Berlyn, M. K. B. ( 1998; ). Linkage map of Escherichia coli K12, edition 10: the traditional map. Microbiol Mol Biol Rev 62, 814-984.
    [Google Scholar]
  4. Blattner, F. R., Plunkett, G., III, Bloch, C. A. & 14 other authors ( 1997; ). The complete genome sequence of the Escherichia coli K-12. Science 277, 1453–1462.[CrossRef]
    [Google Scholar]
  5. Boronat, A. & Aguilar, J. ( 1979; ). Rhamnose-induced propanediol oxidoreductase in Escherichia coli: purification, properties, and comparison with the fucose-induced enzyme. J Bacteriol 140, 320-326.
    [Google Scholar]
  6. Bruijn, F. J. & Lupski, J. R. ( 1984; ). The use of transposon Tn5 mutagenesis in the rapid generation of correlated physical and genetic maps of DNA segments cloned into multicopy plasmids. Gene 27, 131-149.[CrossRef]
    [Google Scholar]
  7. Casadaban, M. J. ( 1976; ). Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and Mu. J Mol Biol 104, 541-555.[CrossRef]
    [Google Scholar]
  8. Chang, Y. Y., Wang, A. Y. & Cronan, J. E.Jr ( 1993; ). Molecular cloning, DNA sequencing, and biochemical analysis of Escherichia coli glyoxylate carboligase. J Biol Chem 268, 3911-3919.
    [Google Scholar]
  9. Collins, S. H., Jarvis, A. W., Lindsay, R. J. & Hamilton, W. A. ( 1976; ). Proton movements coupled to lactate and alanine transport in Escherichia coli: isolation of mutants with altered stoichiometry in alanine transport. J Bacteriol 126, 1232-1244.
    [Google Scholar]
  10. Dong, J. M., Taylor, J. S., Latour, D. J., Iuchi, S. & Lin, E. C. C. ( 1993; ). Three overlapping lct genes involved in l-lactate utilization by Escherichia coli. J Bacteriol 175, 6671-6678.
    [Google Scholar]
  11. Elliot, T. ( 1992; ). A method for constructing single copy lac fusions in Salmonella typhimurium and its application to the hemA–prfA operon. J Bacteriol 174, 245-253.
    [Google Scholar]
  12. Friedrich, M., Laderer, U. & Schink, B. ( 1991; ). Fermentative degradation of glycolic acid by defined syntrophic cocultures. Arch Microbiol 156, 398-404.[CrossRef]
    [Google Scholar]
  13. Fuqua, W. C. ( 1992; ). An improved chloramphenicol resistance gene cassette for site-directed marker replacement mutagenesis. Biotechniques 12, 223-225.
    [Google Scholar]
  14. Halestrap, A. P. & Price, N. T. ( 1999; ). The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem J 343, 281-299.[CrossRef]
    [Google Scholar]
  15. Hansen, R. W. & Hayashi, J. A. ( 1962; ). Glycollate metabolism in Escherichia coli. J Bacteriol 83, 679-687.
    [Google Scholar]
  16. Holmes, D. S. & Quigley, M. ( 1981; ). A rapid boiling method for the preparation of bacterial plasmids. Anal Biochem 114, 193-197.[CrossRef]
    [Google Scholar]
  17. Howitz, K. T. & McCarty, R. E. ( 1991; ). Solubilization, partial purification, and reconstitution of the glycolate/glycerate transporter from chloroplast inner envelope membranes. Plant Physiol 96, 1060-1069.[CrossRef]
    [Google Scholar]
  18. Jackson, V. N. & Halestrap, A. P. ( 1996; ). The kinetics, substrate, and inhibitor specificity of the monocarboxylate (lactate) transporter of rat liver cells determined using the fluorescent intracellular pH indicator, 2′,7′-bis(carboxyethyl)-5(6)-carboxyfluorescein. J Biol Chem 271, 861-868.[CrossRef]
    [Google Scholar]
  19. Kohara, Y., Akiyame, K. & Isono, K. ( 1987; ). The physical map of the whole Escherichia coli chromosome. Application of a new strategy for rapid analysis and sorting of a large genomic library. Cell 50, 495-501.[CrossRef]
    [Google Scholar]
  20. Kornberg, H. L. & Sadler, J. R. ( 1961; ). The metabolism of C2 compounds in microorganisms. 8. A dicarboxylic acid cycle as a route for the oxidation of glycollate by Escherichia coli. Biochem J 81, 503-513.
    [Google Scholar]
  21. Lord, J. M. ( 1972; ). Glycolate oxidoreductase in Escherichia coli. Biochim Biophys Acta 267, 227-237.[CrossRef]
    [Google Scholar]
  22. Matin, A. & Konings, W. N. ( 1973; ). Transport of lactate and succinate by membrane vesicles of Escherichia coli, Bacillus subtilis and a Pseudomonas species. Eur J Biochem 34, 58-67.[CrossRef]
    [Google Scholar]
  23. Miller, J. H. (1992). A Short Course in Bacterial Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  24. Molina, I., Pellicer, M.-T., Badia, J., Aguilar, J. & Baldomà, L. ( 1994; ). Molecular characterization of Escherichia coli malate synthase G. Differentiation with the malate synthase A isoenzyme. Eur J Biochem 224, 541-548.[CrossRef]
    [Google Scholar]
  25. Moralejo, P., Egan, S. M., Hidalgo, E. & Aguilar, J. ( 1993; ). Sequencing and characterization of a gene cluster encoding the enzymes for l-rhamnose metabolism in Escherichia coli. J Bacteriol 175, 5585-5594.
    [Google Scholar]
  26. Mudd, E. A., Krisch, H. M. & Higgins, C. F. ( 1990; ). RNAseE, an endoribonuclease, has a general role in the chemical decay of Escherichia coli mRNA: evidence that rne and ams are the same genetic locus. Mol Microbiol 4, 2127-2135.[CrossRef]
    [Google Scholar]
  27. Ornston, L. N. & Ornston, M. K. ( 1969; ). Regulation of glyoxylate metabolism in Escherichia coli K12. J Bacteriol 98, 1098-1108.
    [Google Scholar]
  28. Pellicer, M.-T., Badia, J., Aguilar, J. & Baldomà, L. ( 1996; ). glc locus of Escherichia coli: characterization of genes encoding the subunits of glycolate oxidase and the glc regulator protein. J Bacteriol 178, 2051-2059.
    [Google Scholar]
  29. Pellicer, M.-T., Fernandez, C., Badia, J., Aguilar, J., Lin, E. C. C. & Baldomà, L. ( 1999; ). Cross-induction of glc and ace operons of Escherichia coli attributable to pathway intersection. Characterization of the glc promoter. J Biol Chem 274, 1745-1752.[CrossRef]
    [Google Scholar]
  30. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  31. Sensen, C. W., Klenk, H. P., Singh, R. K. & 10 other authors ( 1996; ). Organizational characteristics and information content of an archaeal genome: 156 kb of sequence from Sulfolobus sofataricus P2. Mol Microbiol 22, 175–191.[CrossRef]
    [Google Scholar]
  32. Saier, M. H.Jr ( 2000; ). Families of transmembrane sugar transport proteins. Mol Microbiol 35, 699-710.[CrossRef]
    [Google Scholar]
  33. Silhavy, T. J., Berman, M. L. & Enquist, L. (1984). Experiments with Gene Fusions. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  34. Simons, R. W., Houman, F. & Kleckner, N. ( 1987; ). Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene 53, 85-96.[CrossRef]
    [Google Scholar]
  35. Stewart, R. & Codd, G. A. ( 1981; ). Glycollate and glyoxylate excretion by Sphaerocystis schroeteri (Chlorophylaceae). Br Phycol J 16, 177-182.[CrossRef]
    [Google Scholar]
  36. Vanderwinkel, E. & De Vlieghere, M. ( 1968; ). Physiologie et génétique de l’isocitritase et des malate synthases chez Escherichia coli. Eur J Biochem 5, 81-90.[CrossRef]
    [Google Scholar]
  37. Wackernagel, W. ( 1973; ). Genetic transformation in E. coli: the inhibitory role of the recBC DNAse. Biochem Biophys Res Commun 51, 306-311.[CrossRef]
    [Google Scholar]
  38. Wilson, B. J. & Tolbert, N. E. ( 1991; ). The transport of glycolic acid by Chlamydomonas reinhardtii. FEBS Lett 279, 313-315.[CrossRef]
    [Google Scholar]
  39. Winans, S. C., Elledge, S. J., Krueger, J. H. & Walker, G. C. ( 1985; ). Site-directed insertion and deletion mutagenesis with cloned fragments in Escherichia coli. J Bacteriol 161, 1219-1221.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-4-1069
Loading
/content/journal/micro/10.1099/00221287-147-4-1069
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error