1887

Abstract

To elucidate the regulatory mechanism for propionate production in , the molecular properties and gene expression of phosphoenolpyruvate carboxykinase (Pck) and pyruvate kinase (Pyk) were investigated. The Pck was deduced to consist of 538 aa with a molecular mass of 596 kDa, and appeared to exist as a monomer. The Pyk was revealed to consist of four identical subunits consisting of 469 aa with a molecular mass of 513 kDa. Both Mg and Mn were required for the maximal activity of Pck, and Pck utilized ADP, not GDP or IDP, as a substrate. Either Mg or Mn was required for Pyk activity, and the enzyme was activated by phosphoenolpyruvate (PEP) and fructose 1,6-bisphosphate (FBP). Pyk activity was severely inhibited by P, but restored by the addition of FBP. The value of Pck for PEP (055 mM) was nearly equal to the value of Pyk for PEP, suggesting that the partition of the flow from PEP in the fermentation pathways is determined by the activity ratio of Pck to Pyk. Both and genes were monocistronic, although two transcriptional start sites were found in . The level of mRNA was not different whether glucose or lactate was the energy substrate. However, the mRNA level was 12-fold higher when grown on lactate than on glucose. The level of mRNA was inversely related to the sufficiency of energy, suggesting that Pck synthesis is regulated at the transcriptional level when energy supply is altered. It was conceivable that the transcription of in is triggered by PEP and suppressed by ATP.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-3-681
2001-03-01
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/3/1470681a.html?itemId=/content/journal/micro/10.1099/00221287-147-3-681&mimeType=html&fmt=ahah

References

  1. Abbe K., Yamada T. 1982; Purification and properties of pyruvate kinase from Streptococcus mutans . J Bacteriol 149:299–305
    [Google Scholar]
  2. Asanuma N., Hino T. 1997; Tolerance to low pH and lactate production in rumen bacteria. Anim Sci Technol 68:367–376 [CrossRef]
    [Google Scholar]
  3. Asanuma N., Hino T. 2000; Effect of pH and energy supply on the activity and amount of pyruvate formate-lyase in Streptococcus bovis. Appl Environ Microbiol 66:3773–3777 [CrossRef]
    [Google Scholar]
  4. Asanuma N., Iwamoto M., Hino T. 1997; Regulation of lactate dehydrogenase synthesis in a ruminal bacterium, Streptococcus bovis. J Gen Appl Microbiol 43:325–331 [CrossRef]
    [Google Scholar]
  5. Asanuma N., Iwamoto M., Hino T. 1998; Formate metabolism by ruminal microorganisms in relation to methanogenesis. Anim Sci Technol 69:576–584
    [Google Scholar]
  6. Asanuma N., Iwamoto M., Hino T. 1999; Structure and transcriptional regulation of the gene encoding pyruvate formate-lyase of a ruminal bacterium, Streptococcus bovis. Microbiology 145:151–157 [CrossRef]
    [Google Scholar]
  7. Bergen W. G., Bates D. B. 1984; Ionophores: their effect on production efficiency and mode of action. J Anim Sci 58:1465–1483
    [Google Scholar]
  8. Bond D. L., Russell J. B. 1998; Relationship between intracellular phosphate, proton motive force, and rate of nongrowth energy dissipation (energy spilling) in Streptococcus bovis JB1. Appl Environ Microbiol 64:976–981
    [Google Scholar]
  9. Branny P., Garel J.-R, de la Torre F. 1993; Cloning, sequencing, and expression in Escherichia coli of the gene coding for phosphofructokinase in Lactobacillus bulgaricus. J Bacteriol 175:5344–5349
    [Google Scholar]
  10. Caldwell D. R., Bryant M. P. 1966; Medium without rumen fluid for non-selective enumeration and isolation of rumen bacteria. Appl Microbiol 14:794–801
    [Google Scholar]
  11. Cannata J. B., de Flombaum M. A. C. 1974; Phosphoenolpyruvate carboxykinase from bakers yeast: kinetics of phosphoenolpyruvate formation. J Biol Chem 249:3356–3365
    [Google Scholar]
  12. Collins L. B., Thomas T. D. 1974; Pyruvate kinase of Streptococcus lactis . J Bacteriol 120:52–58
    [Google Scholar]
  13. Garcia-Olalla C., Garrido-Pertierra A. 1987; Purification and kinetic properties of pyruvate kinase isoenzymes of Salmonella typhimurium . Biochem J 241:573–581
    [Google Scholar]
  14. Garrigues C., Loubiere P., Lindley N. D., Cocaign-Bousquet M. 1997; Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis : predominant role of the NADH/NAD+ ratio. J Bacteriol 179:5282–5287
    [Google Scholar]
  15. Hino T., Miyazaki K., Kuroda S. 1991; Role of extracellular acetate in the fermentation of glucose by a ruminal bacterium, Megasphaera elsdenii . J Gen Appl Microbiol 37:121–129 [CrossRef]
    [Google Scholar]
  16. Hobson P. N., Summers R. 1972; ATP pool and growth yield in Selenomonas ruminantium . J Gen Microbiol 70:351–360 [CrossRef]
    [Google Scholar]
  17. Howard O., Gerber A. S., Hartl D. L. 1988; Genetic applications of an inverse polymerase chain reaction. Genetics 120:621–623
    [Google Scholar]
  18. Hungate R. E. 1966; Chapter 2. In The Rumen and Its Microbes pp 8–90 Edited by Hungate R. E. New York: Academic Press;
    [Google Scholar]
  19. Hungate R. E., Smith W., Bauchop T., Yu I., Rabinowitz J. C. 1970; Formate as an intermediate in the bovine rumen fermentation. J Bacteriol 102:389–397
    [Google Scholar]
  20. Kapoor R., Venkitasubramanian T. A. 1981; Glucose 6-phosphate activation of pyruvate kinase from Mycobacterium smegmatis . Biochem J 193:435–440
    [Google Scholar]
  21. Kimmich G. A., Randles J., Brand J. S. 1975; Assay of picomole amounts of ATP, ADP and AMP using the luciferase enzyme system. Anal Biochem 69:187–206 [CrossRef]
    [Google Scholar]
  22. Krebs A., Bridger W. A. 1980; The kinetic properties of phosphoenolpyruvate carboxykinase of Escherichia coli . Can J Biochem 58:309–318 [CrossRef]
    [Google Scholar]
  23. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  24. Laivenieks M., Vieille C., Zeikus J. G. 1997; Cloning, sequencing, and overexpression of the Anaerobiospirillum succiniciproducens phosphoenolpyruvate carboxykinase ( pckA ) gene. Appl Environ Microbiol 63:2273–2280
    [Google Scholar]
  25. Llanos R. M., Harris C. J., Hillier A. J., Davidson B. E. 1993; Identification of a novel operon in Lactococcus lactis encoding three enzymes for lactic acid synthesis: phosphofructokinase, pyruvate kinase, and lactate dehydrogenase. J Bacteriol 175:2541–2551
    [Google Scholar]
  26. Marounek M., Fliegrova K., Bartos S. 1989; Metabolism and some characteristics of ruminal strains of Megasphaera elsdenii . Appl Environ Microbiol 55:1570–1573
    [Google Scholar]
  27. Matte A., Goldie H., Sweet R. M., Delbaere L. T. J. 1996; Crystal structure of Escherichia coli phosphoenolpyruvate carboxykinase: a new structural family with the P-loop nucleoside triphosphate hydrolase fold. J Mol Biol 256:126–143 [CrossRef]
    [Google Scholar]
  28. Mattevi A., Bolognesi M., Valentini G. 1996; The allosteric regulation of pyruvate kinase. FEBS Lett 389:15–19 [CrossRef]
    [Google Scholar]
  29. Medina V., Pontarollo R., Glaeske D., Tabel H., Goldie H. 1990; Sequence of the pck A gene of Escherichia coli K-12: relevance to genetic and allosteric regulation and homology of E. coli phosphoenolpyruvate carboxykinase with the enzymes from Trypanosoma brucei and Saccharomyces cerevisiae . J Bacteriol 172:7151–7156
    [Google Scholar]
  30. Melville S. B., Michel T. A., Macy J. M. 1988; Pathway and sites for energy conservation in the metabolism of glucose by Selenomonas ruminantium . J Bacteriol 170:5298–5304
    [Google Scholar]
  31. Miller T. L. 1995; Ecology of methane production and hydrogen sinks in the rumen. In Ruminant Physiology: Digestion, Metabolism, Growth and Reproduction pp 317–331 Edited by Engelhardt W. A., Leonhard-Marek S., Breves G., Giesecke D. Stuttgart: Ferdinand Enke Verlag;
    [Google Scholar]
  32. Sakai H., Ohta T. 1993; Molecular cloning and nucleotide sequence of the gene for pyruvate kinase of Bacillus stearothermophilus and the production of the enzyme in Escherichia coli : evidence that the genes for phosphofructokinase and pyruvate kinase constitute an operon. Eur J Biochem 211:851–859 [CrossRef]
    [Google Scholar]
  33. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  34. Samuelov N. S., Lamed R., Lowe S., Zeikus J. G. 1991; Influence of CO2-HCO3-levels and pH on growth, succinate production, and enzyme activities of Anaerobiospirillum succiniciproducens . Appl Environ Microbiol 57:3013–3019
    [Google Scholar]
  35. Schocke L., Weimer P. J. 1997; Purification and characterization of phosphoenolpyruvate carboxykinase from the anaerobic ruminal bacterium Ruminococcus flavefaciens. Arch Microbiol 167:289–294 [CrossRef]
    [Google Scholar]
  36. Steiner P., Fussenegger M., Bailey J. E., Sauer U. 1998; Cloning and expression of the Zymomonas mobilis pyruvate kinase gene in Escherichia coli . Gene 220:31–38 [CrossRef]
    [Google Scholar]
  37. Stewart C. S., Flint H. J., Bryant M. P. 1997; The rumen bacteria. In The Rumen Microbial Ecosystem pp 10–72 Edited by Hobson P. N., Stewart C. S. London and New York: Elsevier;
    [Google Scholar]
  38. Tanaka K., Sakai H., Ohta T., Matsuzawa H. 1995; Molecular cloning of the genes for pyruvate kinases of two bacilli, Bacillus psychrophilus and Bacillus licheniformis , and comparison of properties of the enzymes produced in Escherichia coli . Biosci Biotechnol Biochem 59:1536–1542 [CrossRef]
    [Google Scholar]
  39. Tari L. W., Matte A., Pugazhenthi U., Goldie H., Delbaere L. T. J. 1996; Snapshot of an enzyme reaction intermediate in the structure of the ATP-Mg2+-oxalate ternary complex of Escherichia coli PEP carboxykinase. Nature Struct Biol 3:355–363 [CrossRef]
    [Google Scholar]
  40. Teraoka H., Nishikino T., Izui K., Katsuki H. 1970; Control of the synthesis of phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase in Escherichia coli . J Biochem 67:567–575
    [Google Scholar]
  41. Tiwari A. D., Bryant M. P., Wolfe R. S. 1969; Simple method for isolation of Selenomonas ruminantium and some nutritional characteristics of the species. J Dairy Sci 52:2054–2056 [CrossRef]
    [Google Scholar]
  42. Trigrlia T., Peterson M. G., Kemp D. J. 1988; A procedure for in vitro amplification of DNA segments that lie outside of known sequences. Nucleic Acids Res 16:81–86
    [Google Scholar]
  43. Utter M. F., Kolenbrander H. M. 1972; Formation of oxaloacetate by CO2 fixation on phosphoenolpyruvate. In The Enzymes pp 117–168 Edited by Boyer P. New York: Academic Press;
    [Google Scholar]
  44. Van Nevel C. J., Demeyer D. I. 1988; Manipulation of rumen fermentation. In The Rumen Microbial Ecosystem pp 387–443 Edited by Hobson P. N. London and New York: Elsevier;
    [Google Scholar]
  45. Waygood E. B., Rayman M. K., Sanwal B. D. 1975; The control of pyruvate kinases of Escherichia coli . II. Effectors and regulatory properties of the enzyme activated by ribose-5-phosphate. Can J Biochem 53:444–454 [CrossRef]
    [Google Scholar]
  46. Waygood E. B., Mort J. S., Sanwal B. D. 1976; The control of pyruvate kinases of Escherichia coli : binding of substrate and allosteric effectors to the enzyme activated by fructose-1,6-bisphosphate. Biochemistry 15:277–282 [CrossRef]
    [Google Scholar]
  47. Wolin M. J., Miller T. L., Stewart C. S. 1997; Microbe–microbe interactions. In The Rumen Microbial Ecosystem pp 467–491 Edited by Hobson P. N., Stewart C. S. London: Blackie;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-3-681
Loading
/content/journal/micro/10.1099/00221287-147-3-681
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error