1887

Abstract

The mechanisms by which the weak acid preservative benzoic acid inhibits the growth of have been investigated. A reduction in the pyruvate kinase level, which decreases glycolytic flux, did not increase the sensitivity of yeast to benzoic acid. However, a decrease in 6-phosphofructo-1-kinase (PF1K), which does not affect glycolytic flux, did increase sensitivity to benzoic acid. Also, resistance was increased by elevating PF1K levels. Hence, resistance to benzoic acid was not dependent upon optimum glycolytic flux, but upon an adequate PF1K activity. Benzoic acid was shown to depress fructose 2,6-bisphosphate levels in YKC14, a mutant with low PF1K levels. This effect was partially suppressed by overexpressing constitutively active 6-phosphofructo-2-kinase (Pfk26) or by inactivating fructose-2,6-bisphosphatase (in a Δ mutant). The inactivation of PF2K (in a Δ Δ mutant) increased benzoic acid sensitivity. Therefore, the antimicrobial effects of benzoic acid can be relieved, at least in part, by the genetic manipulation of PF1K or fructose 2,6-bisphosphate levels.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-2-403
2001-02-01
2020-09-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/2/1470403a.html?itemId=/content/journal/micro/10.1099/00221287-147-2-403&mimeType=html&fmt=ahah

References

  1. Avigad G.. 1981; Stimulation of yeast phosphofructokinase activity by fructose 2,6-bisphosphate. Biochem Biophys Res Commun102:985–991[CrossRef]
    [Google Scholar]
  2. Bartrons R., Van Schaftingen E., Vissers S., Hers H.-G.. 1982; The stimulation of yeast phosphofructokinase by fructose-2,6-bisphosphate. FEBS Lett143:137–140[CrossRef]
    [Google Scholar]
  3. Boles E., Göhlmann H. W. H., Zimmermann F. K.. 1996; Cloning of a second gene encoding 6-phosphofructo-2-kinase in yeast, and characterisation of mutant strains without fructose-2,6-bisphosphate. Mol Microbiol20:65–76[CrossRef]
    [Google Scholar]
  4. Booth I. R., Kroll R. G.. 1989; The preservation of foods by low pH. In Mechanisms of Action of Food Preservation Procedures pp.119–160Edited by Gould G. W.. London: Elsevier;
    [Google Scholar]
  5. Bradford M. M.. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein-dye binding. Anal Biochem72:248–254[CrossRef]
    [Google Scholar]
  6. Church G. M., Gilbert W.. 1984; Genomic sequencing. Proc Natl Acad Sci USA81:1991–1995[CrossRef]
    [Google Scholar]
  7. Davies S. E. C., Brindle K. M.. 1992; Effects of overexpression of phosphofructokinase on glycolysis in the yeast Saccharomyces cerevisiae. Biochemistry31:4729–4735[CrossRef]
    [Google Scholar]
  8. Eraso P., Gancedo J. M. 1987; Activation of yeast plasma membrane ATPase by acid pH during growth. FEBS Lett224:187–192[CrossRef]
    [Google Scholar]
  9. Feinberg A. P., Vogelstein B.. 1983; A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal Biochem132:6–13[CrossRef]
    [Google Scholar]
  10. François J., Van Schaftingen E., Hers H.-G.. 1986; Effect of benzoate on the metabolism of fructose-2,6-bisphosphate in yeast. Eur J Biochem154:141–145[CrossRef]
    [Google Scholar]
  11. François J., Van Schaftingen E., Hers H.-G.. 1988; Characterisation of phosphofructokinase 2 and of enzymes involved in the degradation of fructose-2,6-bisphosphate in yeast. Eur J Biochem171:599–608[CrossRef]
    [Google Scholar]
  12. Gietz R. D., Woods R. A.. 1998; Transformation of yeast by the lithium acetate/single-stranded carrier DNA/PEG method. In Yeast Gene Analysis: Methods in Microbiology pp.53–66Edited by Brown A. J. P., Tuite M. F.. London: Academic Press;
    [Google Scholar]
  13. Heinisch J. J., Boles E., Timpel C.. 1996; A yeast phosphofructokinase insensitive to the allosteric activator fructose-2,6-bisphosphate. J Biol Chem271:15928–15933[CrossRef]
    [Google Scholar]
  14. Hoffman C. S., Winston F.. 1987; A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene57:267–272[CrossRef]
    [Google Scholar]
  15. Holyoak C. D., Stratford M., McMullin Z., Cole M. B., Crimmins K., Brown A. J. P., Coote P. J.. 1996; Activity of the plasma membrane H+-ATPase and optimal glycolytic flux are required for rapid adaptation and growth of Saccharomyces cerevisiae in the presence of the weak acid preservative, sorbic acid. Appl Environ Microbiol62:3158–3164
    [Google Scholar]
  16. Holyoak C., Bracey D., Piper P. W., Kuchler K., Coote P.. 1999; The Saccharomyces cerevisiae weak-acid-inducible ABC transporter Pdr12 transports fluorescein and preservative anions from the cytosol by an energy-dependent mechanism. J Bacteriol181:4644–4652
    [Google Scholar]
  17. Hunsley J. R., Suelter C. H.. 1969; Yeast pyruvate kinase: kinetic properties. J Biol Chem244:4819–4822
    [Google Scholar]
  18. Krebs H. A., Wiggins D., Stubbs M., Sols A., Bedoya A.. 1983; Studies on the mechanism of the antifungal action of benzoate. Biochem J214:657–663
    [Google Scholar]
  19. Kretschmer M., Fraenkel D. G. 1991; Yeast 6-phosphofructo-2-kinase: sequence and mutant. Biochemistry30:10663–10672[CrossRef]
    [Google Scholar]
  20. Lambert R. J., Stratford M.. 1999; Weak-acid preservatives: modelling microbial inhibition and response. J Appl Microbiol86:157–164[CrossRef]
    [Google Scholar]
  21. Mellor J. E., Dobson M. J., Roberts N. A., Kingsman A. J., Kingsman S. M.. 1985; Factors affecting heterologous gene expression in Saccharomyces cerevisiae. Gene33:215–226[CrossRef]
    [Google Scholar]
  22. Müller S., Zimmermann F. K., Boles E.. 1997; Mutant studies of phosphofructo-2-kinases do not reveal an essential role of fructose-2,6-bisphosphate in the regulation of carbon fluxes in yeast cells. Microbiology143:3055–3061[CrossRef]
    [Google Scholar]
  23. Paravicini G., Kretschmer M.. 1992; The yeast FBP26 gene codes for a fructose-2,6-bisphosphatase. Biochemistry31:7126–7133[CrossRef]
    [Google Scholar]
  24. Pearce A. K., Crimmins K., Groussac E., Hewlins M. J. E., Dickinson J. R., Francois J., Booth I. R., Brown A. J. P.. 2000; Pyruvate kinase (Pyk1) levels influence both the rate and direction of carbon flux in yeast under fermentative conditions. Microbiology147:391–401
    [Google Scholar]
  25. Piper P. W., Mahe Y., Thompson S., Pandjaitan R., Holyoak C., Egner R., Muhlbauer M., Coote P., Kuchler K.. 1998; The Pdr12 ABC transporter is required for the development of weak organic acid resistance in yeast. EMBO J17:4257–4265[CrossRef]
    [Google Scholar]
  26. Ramos S. M., Balbin M., Raposo E., Pardo L. A.. 1989; The mechanism of intracellular acidification induced by glucose in Saccharomyces cerevisiae. J Gen Microbiol135:2413–2422
    [Google Scholar]
  27. Reibstein D., den Hollander J. A., Pilkis S. J., Shulman R. G.. 1986; Studies on the regulation of yeast phosphofructo-1-kinase: its role in aerobic and anaerobic glycolysis. Biochemistry25:219–227[CrossRef]
    [Google Scholar]
  28. Roe A. J., McLaggan D., Davidson I., O’Byrne C., Booth I. R.. 1998; Perturbation of anion balance during inhibition of growth of Escherichia coli by weak acids. J Bacteriol180:767–772
    [Google Scholar]
  29. Serrano R.. 1991; Transport across yeast vacuolar and plasma membranes. In The Molecular Biology of the Yeast Saccharomyces: Genome Dynamics, Protein Synthesis and Energetics pp.523–585Edited by Strathern J. N., Jones E. W., Broach J. R.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  30. Thomas B. J., Rothstein R.. 1989; The genetic control of direct-repeat recombination in Saccharomyces: the effect of rad52 and rad1 on mitotic recombination at GAL10, a transcriptional regulation gene. Genetics123:725–738
    [Google Scholar]
  31. Towbin H., Staehelin T., Gordon J.. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA76:4350–4354[CrossRef]
    [Google Scholar]
  32. Van Schaftingen E., Lederer B., Bartrons R., Hers H.-G.. 1982; A kinetic study of pyrophosphate: fructose-6-phosphate phosphotransferase from potato tubers. Eur J Biochem129:191–195[CrossRef]
    [Google Scholar]
  33. Viegas C. A., Sà-Correia I.. 1991; Activation of plasma membrane ATPase of Saccharomyces cerevisiae by octanoic acid. J Gen Microbiol137:645–651[CrossRef]
    [Google Scholar]
  34. Wach A., Brachat A., Rebischung C., Steiner S., Pokorni K, te Heesen S., Philippsen P.. 1998; PCR-based gene targeting in Saccharomyces cerevisiae. In Yeast Gene Analysis: Methods in Microbiology pp.67–81Edited by Brown A. J. P., Tuite M. F.. London: Academic Press;
    [Google Scholar]
  35. Warth A. D.. 1988; Effect of benzoic acid on growth yield of yeasts differing in their resistance to preservatives. Appl Environ Microbiol54:2091–2095
    [Google Scholar]
  36. Warth A. D.. 1991; Effect of benzoic acid on glycolytic metabolite levels and intracellular pH in Saccharomyces cerevisiae. Appl Environ Microbiol57:3415–3417
    [Google Scholar]
  37. Wicksteed B. L., Collins I., Dershowitz A., Stateva L. I., Green R. P., Oliver S. G., Brown A. J. P., Newlon C. S.. 1994; A physical comparison of chromosome III in six strains of Saccharomyces cerevisiae. Yeast10:39–57[CrossRef]
    [Google Scholar]
  38. Yun S. L., Aust A. E., Suelter C. H.. 1976; A revised preparation of yeast (Saccharomyces cerevisiae) pyruvate kinase. J Biol Chem251:124–128
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-2-403
Loading
/content/journal/micro/10.1099/00221287-147-2-403
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error