1887

Abstract

Extracellular protease and lipase production by psychrotrophic strains of is repressed by iron and regulated by temperature. The regulation of protease and lipase has been investigated in B52. Whereas lipase production is increased below the optimum growth temperature (‘low-temperature regulation’), protease production was relatively constant and only decreased above the optimum growth temperature. The genes encoding protease () and lipase () are encoded at opposite ends of a contiguous set of genes which also includes protease inhibitor, Type I secretion functions and two autotransporter proteins. Evidence is presented indicating that these genes constitute an operon, with a promoter adjacent to which has been identified by S1 nuclease analysis. The regulation of and has been investigated at the RNA level and using fusion strains. Whereas the data are consistent with iron regulation at the transcriptional level, a fusion is not regulated by temperature, suggesting that temperature regulation is post-transcriptional or post-translational. The possibility of regulation at the level of mRNA decay is discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-2-345
2001-02-01
2020-01-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/2/1470345a.html?itemId=/content/journal/micro/10.1099/00221287-147-2-345&mimeType=html&fmt=ahah

References

  1. Ahn J. H., Pan J. G., Rhee J. S.. 1999; Identification of the tliDEF transporter specific for lipase in Pseudomonas fluorescens SIK W1. J Bacteriol181:1847–1852
    [Google Scholar]
  2. Aiba H., Adhya S., de Crombrugghe B.. 1981; Evidence for two functional gal promoters in intact Escherichia coli cells. J Biol Chem256:11905–11910
    [Google Scholar]
  3. Andersson R. E.. 1980; Microbial lipolysis at low temperatures. Appl Environ Microbiol39:36–40
    [Google Scholar]
  4. Andersson R. E., Hedlund C. B, Jonsson U.. 1979; Thermal inactivation of a heat-resistant lipase produced by the psychrotrophic bacterium Pseudomonas fluorescens. J Dairy Sci62:361–367[CrossRef]
    [Google Scholar]
  5. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K.. 1987; Current Protocols in Molecular Biology New York: Greene Publishing Associates and Wiley Interscience;
    [Google Scholar]
  6. Christopher F., Franklin H.. 1985; Broad-host range cloning vectors for Gram-negative bacteria. In DNA Cloning, a Practical Approach pp.165–183Edited by Glover D. M., Hames B. D.. Oxford: IRL Press;
    [Google Scholar]
  7. Duong F., Lazdunski A., Cami B., Murgier M.. 1992; Sequence of a cluster of genes controlling synthesis and secretion of alkaline protease in P. aeruginosa: relationship to other secretory pathways. Gene121:47–54[CrossRef]
    [Google Scholar]
  8. Falconi M., Colonna B., Prosseda G., Micheli G., Gualerzi C. O.. 1998; Thermoregulation of Shigella and Escherichia coli EIEC pathogenicity: a temperature-dependent structural transition of DNA modulates accessibility of virF promoter to transcriptional repressor H-NS. EMBO J17:7033–7043[CrossRef]
    [Google Scholar]
  9. Fellay R., Frey J., Krisch H.. 1987; Interposon mutagenesis of soil and water bacteria: a family of DNA fragments designed for in vitro insertional mutagenesis of gram-negative bacteria. Gene52:147–154[CrossRef]
    [Google Scholar]
  10. Goldenberg D., Azar I., Oppenheim A. B. 1996; Differential mRNA stability of the cspA gene in the cold-shock response of Escherichia coli. Mol Microbiol19:241–248[CrossRef]
    [Google Scholar]
  11. Gugi B., Orange M., Hellio F., Burini J. F., Guillou C., Leriche F., Guespin-Michel J. F.. 1991; Effect of growth temperature on several exported enzyme activities in the psychrotrophic bacterium Pseudomonas fluorescens. J Bacteriol173:3814–3820
    [Google Scholar]
  12. Heck C., Rothfuchs R., Jäger A., Rauhut R., Klug G.. 1996; Effect of the pufQ-pufB intercistronic region on puf mRNA stability in Rhodobacter capsulatus. Mol Microbiol20:1165–1178[CrossRef]
    [Google Scholar]
  13. Jaeger J. A., Turner D. H., Zuker M.. 1990; Predicting optimal and suboptimal structures for RNA. Methods Enzymol183:281–306
    [Google Scholar]
  14. Johnson L. A., Beacham I. R., MacRae I. C., Free M. L.. 1992; Degradation of triglycerides by a pseudomonad isolated from milk: molecular analysis of a lipase-encoding gene and its expression in Escherichia coli. Appl Environ Microbiol58:1776–1779
    [Google Scholar]
  15. Kawai E., Idei A., Kumura H., Shimazaki K., Akatsuka H., Omori K.. 1999; The ABC-exporter genes involved in the lipase secretion are clustered with the genes for lipase, alkaline protease, and serine protease homologues in Pseudomonas fluorescens no. 33. Biochim Biophys Acta1446:377–382[CrossRef]
    [Google Scholar]
  16. Klug G.. 1991; Endonucleolytic degradation of puf mRNA in Rhodobacter capsulatus is influenced by oxygen. Proc Natl Acad Sci USA88:1765–1769[CrossRef]
    [Google Scholar]
  17. Kovach M. E., Phillips R. W., Elzer P. H., Roop R. M. II, Peterson K. M.. 1994; PBBR1MCS: a broad-host-range cloning vector. Bio/Technology16:800–802
    [Google Scholar]
  18. Liao C.-H., McCallus D. E.. 1998; Biochemical and genetic characterisation of an extracellular protease from Pseudomonas fluorescens CY091. Appl Environ Microbiol64:914–921
    [Google Scholar]
  19. McKay D. B., Beacham I. R.. 1995; The effect of temperature on the degradation of triglycerides by a pseudomonad isolated from milk: free fatty acid accumulation as a balance between rates of triglyceride hydrolysis and fatty acid consumption. J Appl Bacteriol79:651–656[CrossRef]
    [Google Scholar]
  20. McKay D. B., Dieckelmann M., Beacham I. R.. 1995; Degradation of triglycerides by a pseudomonad isolated from milk: the roles of lipase and esterase studied using recombinant strains overproducing, or specifically deficient in these enzymes. J Appl Bacteriol78:216–223[CrossRef]
    [Google Scholar]
  21. McKellar R. C. 1989; Regulation and control of synthesis. In Enzymes of Psychrotrophs in Raw Food pp.153–172Edited by McKellar R. C.. Boca Raton, FL: CRC Press;
    [Google Scholar]
  22. McKellar R. C., Cholette H.. 1987; Effect of temperature shifts on extracellular proteinase-specific mRNA pools in Pseudomonas fluorescens B52. Appl Environ Microbiol53:1973–1976
    [Google Scholar]
  23. McKellar R. C., Shamsuzzaman K., San Hose C., Cholette H.. 1987; Influence of iron(III) and pyoverdine on extracellular proteinase and lipase production by Pseudomonas fluorescens B52. Arch Microbiol147:225–230[CrossRef]
    [Google Scholar]
  24. Merieau A., Gugi B., Guespin-Michel J. F., Orange N.. 1993; Temperature regulation of lipase secretion by Pseudomonas fluorescens strain MFO. Appl Microbiol Biotechnol39:104–109[CrossRef]
    [Google Scholar]
  25. Miller J. H.. 1972; Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  26. Missiakis D., Raina S.. 1998; The extracytoplasmic function sigma factors: role and regulation. Mol Microbiol28:1059–1066[CrossRef]
    [Google Scholar]
  27. Nakahama K., Yoshimura K., Matumoto R., Kikuchi M., Lee I. S., Hase T., Matsubara H.. 1986; Cloning and sequencing of Serratia protease gene. Nucleic Acids Res14:5843–5855[CrossRef]
    [Google Scholar]
  28. Ohnishi Y., Beppu T., Horinouchi S.. 1997; Two genes encoding serine protease homologues in Serratia marcescens and characterization of their products in Escherichia coli. J Biochem121:902–913[CrossRef]
    [Google Scholar]
  29. Penfold R. J., Pemberton J. M.. 1992; An improved suicide vector for the construction of chromosomal insertion mutations in bacteria. Gene118:145–146[CrossRef]
    [Google Scholar]
  30. Rauhut R., Klug G.. 1999; mRNA degradation in bacteria. FEMS Microbiol Rev23:353–370[CrossRef]
    [Google Scholar]
  31. Richardson B. C.. 1981; The purification and characterization of a heat-stable protease from Pseudomonas fluorescens B52. NZ J Dairy Sci Technol16:195–207
    [Google Scholar]
  32. Richardson B. C., Te Whaiti I. E.. 1978; Partial characterization of heat-stable extracellular proteases of some psychrotrophic bacteria from raw milk. NZ J Dairy Sci Technol13:172–176
    [Google Scholar]
  33. Roy R. N.. 1980; Fluorimetric assay of the activity of extracellular lipases of Pseudomonas fluorescens and Serratia marcescens. J Appl Bacteriol49:265–271[CrossRef]
    [Google Scholar]
  34. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  35. Sexton R., Gill P. R. Jr, Callanan M. J., O’Sullivan D. J., Dowling D. N., O’Gara F.. 1995; Iron-responsive gene expression in Pseudomonas fluorescens M114: cloning and characterisation of a transcription-activating factor, PbrA. Mol Microbiol15:297–306[CrossRef]
    [Google Scholar]
  36. Sexton R., Gill P. R. Jr, Dowling D. N., O’Gara F.. 1996; Transcriptional regulation of the iron-responsive sigma factor gene pbrA. Mol Gen Genet250:50–58
    [Google Scholar]
  37. Smith P. K., Krohn R. I., Hermanson G. T..7 other authors 1985; Measurement of protein using bicinchoninic acid. Anal Biochem150:76–85[CrossRef]
    [Google Scholar]
  38. Stead D.. 1984; Evaluation of a fluorometric assay on the lipases from strains of milk psychrophilic bacteria. J Dairy Res51:123–130[CrossRef]
    [Google Scholar]
  39. Szabo M., Maskell D., Butler P., Love J., Moxon R.. 1992; Use of chromosomal gene fusions to investigate the role of repetitive DNA in regulation of genes involved in lipopolysaccharide biosynthesis in Haemophilus influenzae. J Bacteriol174:7245–7252
    [Google Scholar]
  40. Tan Y., Miller K. J. 1992; Cloning, expression and nucleotide sequence of a lipase gene from Pseudomonas fluorescens B52. Appl Environ Microbiol58:1402–1407
    [Google Scholar]
  41. Venturi V., Weisbeek P., Koster M.. 1995; Gene regulation of siderophore-mediated iron acquisition in Pseudomonas: not only the Fur repressor. Mol Microbiol17:603–610[CrossRef]
    [Google Scholar]
  42. Wassif C., Cheek D., Belas R.. 1995; Molecular analysis of a metalloprotease from Proteus mirabilis. J Bacteriol177:5790–5798
    [Google Scholar]
  43. Wosten M. M.. 1998; Eubacterial sigma-factors. FEMS Microbiol Rev22:127–150[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-2-345
Loading
/content/journal/micro/10.1099/00221287-147-2-345
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error