1887
Preview this article:
Zoom in
Zoomout

Endless possibilities: translation termination and stop codon recognition, Page 1 of 1

| /docserver/preview/fulltext/micro/147/2/1470255a-1.gif

There is no abstract available for this article.
Use the preview function to the left.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-2-255
2001-02-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/2/1470255a.html?itemId=/content/journal/micro/10.1099/00221287-147-2-255&mimeType=html&fmt=ahah

References

  1. Abastado, J. P., Miller, P. F., Jackson, B. M. & Hinnebusch, A. G. ( 1991; ). Suppression of ribosomal reinitiation at upstream open reading frames in amino acid-starved cells forms the basis for GCN4 translational control. Mol Cell Biol 11, 486-496.
    [Google Scholar]
  2. Al Karadaghi, S., Aevarsson, A., Garber, M., Zheltonosova, J. & Liljas, A. ( 1996; ). The structure of elongation factor G in complex with GDP: conformational flexibility and nucleotide exchange. Structure 4, 555-565.[CrossRef]
    [Google Scholar]
  3. Baum, M. & Beier, H. ( 1998; ). Wheat cytoplasmic arginine tRNA isoacceptor with a U*CG anticodon is an efficient UGA suppressor in vitro. Nucleic Acids Res 26, 1390-1395.[CrossRef]
    [Google Scholar]
  4. Beier, H., Barciszewska, M., Krupp, G., Mitnacht, R. & Gross, H. J. ( 1984; ). UAG readthrough during TMV RNA translation: isolation and sequence of two tRNAsTyr with suppressor activity from tobacco plants. EMBO J 3, 351-356.
    [Google Scholar]
  5. Berry, M. J., Banu, L., Chen, Y. Y., Mandel, S. J., Kieffer, J. D., Harney, J. W. & Larsen, P. R. ( 1991; ). Recognition of UGA as a selenocysteine codon in type I deiodinase requires sequences in the 3′ untranslated region. Nature 353, 273-276.[CrossRef]
    [Google Scholar]
  6. Berry, M. J., Banu, L., Harney, J. W. & Larsen, P. R. ( 1993; ). Functional characterization of the eukaryotic SECIS elements which direct selenocysteine insertion at UGA codons. EMBO J 12, 3315-3322.
    [Google Scholar]
  7. Bertram, G., Bell, H. A., Ritchie, D. W., Fullerton, G. & Stansfield, I. ( 2000; ). Terminating eukaryote translation: domain 1 of release factor eRF1 functions in stop codon recognition. RNA 6, 1236-1247.[CrossRef]
    [Google Scholar]
  8. Bjornsson, A., Mottagui-Tabar, S. & Isaksson, L. A. ( 1996; ). Structure of the C-terminal end of the nascent peptide influences translation termination. EMBO J 15, 1696-1704.
    [Google Scholar]
  9. Bock, A., Forchhammer, K., Heider, J. & Baron, C. ( 1991; ). Selenoprotein synthesis: an expansion of the genetic code. Trends Biochem Sci 16, 463-467.[CrossRef]
    [Google Scholar]
  10. Bonetti, B., Fu, L. W., Moon, J. & Bedwell, D. M. ( 1995; ). The efficiency of translation termination is determined by a synergistic interplay between upstream and downstream sequences in Saccharomyces cerevisiae. J Mol Biol 251, 334-345.[CrossRef]
    [Google Scholar]
  11. Brierley, I., Digard, P. & Inglis, S. C. ( 1989; ). Characterization of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot. Cell 57, 537-547.[CrossRef]
    [Google Scholar]
  12. Brown, C. M. & Tate, W. P. ( 1994; ). Direct recognition of mRNA stop signals by Escherichia coli polypeptide chain release factor two. J Biol Chem 269, 33164-33170.
    [Google Scholar]
  13. Brown, C. M., Dinesh-Kumar, S. P. & Miller, W. A. ( 1996; ). Local and distant sequences are required for efficient readthrough of the barley yellow dwarf virus PAV coat protein gene stop codon. J Virol 70, 5884-5892.
    [Google Scholar]
  14. Buckingham, R. H., Grentzmann, G. & Kisselev, L. ( 1997; ). Polypeptide chain release factors. Mol Microbiol 24, 449-456.[CrossRef]
    [Google Scholar]
  15. Caron, F. & Meyer, E. ( 1985; ). Does Paramecium primaurelia use a different genetic code in its macronucleus? Nature 314, 185-188.[CrossRef]
    [Google Scholar]
  16. Caskey, T., Forrester, W. C., Tate, W. P. & Ward, C. D. ( 1984; ). Cloning of the Escherichia coli release factor 2 gene. J Bacteriol 158, 365-368.
    [Google Scholar]
  17. Chernoff, Y. O., Derkach, I. L. & Inge-Vechtomov, S. G. ( 1993; ). Multicopy SUP35 gene induces de-novo appearance of psi-like factors in the yeast Saccharomyces cerevisiae. Curr Genet 24, 268-270.[CrossRef]
    [Google Scholar]
  18. Chernoff, Y. O., Lindquist, S. L., Ono, B., Inge-Vechtomov, S. G. & Liebman, S. W. ( 1995; ). Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [PSI(+)]. Science 268, 880-884.[CrossRef]
    [Google Scholar]
  19. Clare, J. J., Belcourt, M. & Farabaugh, P. J. ( 1988; ). Efficient translational frameshifting occurs within a conserved sequence of the overlap between the two genes of a yeast Ty1 transposon. Proc Natl Acad Sci USA 85, 6816-6820.[CrossRef]
    [Google Scholar]
  20. Cox, B. S. ( 1965; ). Ψ, a cytoplasmic suppressor of super suppressor in yeast. Heredity 20, 505-521.[CrossRef]
    [Google Scholar]
  21. Craigen, W. J., Lee, C. C. & Caskey, C. T. ( 1990; ). Recent advances in peptide chain termination. Mol Microbiol 4, 861-865.[CrossRef]
    [Google Scholar]
  22. Crawford, D.-J. G., Ito, K., Nakamura, Y. & Tate, W. P. ( 1999; ). Indirect regulation of translational termination efficiency at highly expressed genes and recoding sites by the factor recycling function of Escherichia coli release factor RF3. EMBO J 18, 727-732.[CrossRef]
    [Google Scholar]
  23. Czaplinski, K., Ruizechevarria, M. J., Paushkin, S. V., Han, X., Weng, Y. M., Perlick, H. A., Dietz, H. C., Ter-Avanesyan, M. D. & Peltz, S. W. ( 1998; ). The surveillance complex interacts with the translation release factors to enhance termination and degrade aberrant mRNAs. Genes Dev 12, 1665-1677.[CrossRef]
    [Google Scholar]
  24. DePace, A. H., Santoso, A., Hillner, P. & Weissman, J. S. ( 1998; ). A critical role for amino-terminal glutamine/asparagine repeats in the formation and propagation of a yeast prion. Cell 93, 1241-1252.[CrossRef]
    [Google Scholar]
  25. Dever, T. E., Feng, L., Wek, R. C., Cigan, A. M., Donahue, T. F. & Hinnebusch, A. G. ( 1992; ). Phosphorylation of initiation factor 2 alpha by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast. Cell 68, 585-596.[CrossRef]
    [Google Scholar]
  26. Dihanich, M. E., Najarian, D., Clark, R., Gillman, E. C., Martin, N. C. & Hopper, A. K. ( 1987; ). Isolation and characterization of MOD5, a gene required for isopentenylation of cytoplasmic and mitochondrial tRNAs of Saccharomyces cerevisiae. Mol Cell Biol 7, 177-184.
    [Google Scholar]
  27. Dinesh-Kumar, S. P., Brault, V. & Miller, W. A. ( 1992; ). Precise mapping and in vitro translation of a trifunctional subgenomic RNA of barley yellow dwarf virus. Virology 187, 711-722.[CrossRef]
    [Google Scholar]
  28. Doel, S. M., Mccready, S. J., Nierras, C. R. & Cox, B. S. ( 1994; ). The dominant PNM2(−) mutation which eliminates the psi-factor of Saccharomyces cerevisiae is the result of a missense mutation in the SUP35 gene. Genetics 137, 659-670.
    [Google Scholar]
  29. Drugeon, G., Jean-Jean, O., Frolova, L., Le Goff, X., Philippe, M., Kisselev, L. & Haenni, A.-L. ( 1997; ). Eukaryotic release factor 1 (eRF1) abolishes readthrough and competes with suppressor tRNAs at all three termination codons in messenger RNA. Nucleic Acids Res 25, 2254-2258.[CrossRef]
    [Google Scholar]
  30. Eaglestone, S. S., Cox, B. S. & Tuite, M. F. ( 1999; ). Translation termination efficiency can be regulated in Saccharomyces cerevisiae by environmental stress through a prion-mediated mechanism. EMBO J 18, 1974-1981.[CrossRef]
    [Google Scholar]
  31. Engelberg-Kulka, H. ( 1981; ). UGA suppression by normal tRNA Trp in Escherichia coli: codon context effects. Nucleic Acids Res 9, 983-991.[CrossRef]
    [Google Scholar]
  32. Eurwilaichitr, L., Graves, F. M., Stansfield, I. & Tuite, M. F. ( 1999; ). The C-terminus of eRF1 defines a functionally important domain for translation termination in Saccharomyces cerevisiae. Mol Microbiol 32, 485-496.[CrossRef]
    [Google Scholar]
  33. Fearon, K., McClendon, V., Bonetti, B. & Bedwell, D. M. ( 1994; ). Premature translation termination mutations are efficiently suppressed in a highly conserved region of yeast Ste6p, a member of the ATP-binding cassette (ABC) transporter family. J Biol Chem 269, 17802-17808.
    [Google Scholar]
  34. Feng, Y.-X., Copeland, T. D., Oroszlan, S., Rein, A. & Levin, J. G. ( 1990; ). Identification of amino acids inserted during suppression of UAA and UGA termination codons at the gagpol junction of Moloney murine leukemia virus. Proc Natl Acad Sci USA 87, 8860-8863.[CrossRef]
    [Google Scholar]
  35. Feng, Y.-X., Yuan, H., Rein, A. & Levin, J. G. ( 1992; ). Bipartite signal for read-through suppression in murine leukemia virus mRNA: an eight-nucleotide purine-rich sequence immediately downstream of the gag termination codon followed by an RNA pseudoknot. J Virol 66, 5127-5132.
    [Google Scholar]
  36. Fraser, C. M., Gocayne, J. D., White, O., Adams, M., Clayton, R., Fleischmann, R. D. & Bult, C. J. ( 1995; ). The minimal gene complement of Mycoplasma genitalium. Science 270, 397-403.[CrossRef]
    [Google Scholar]
  37. Freistroffer, D. V., Pavlov, M. Y., MacDougall, J., Buckingham, R. H. & Ehrenberg, M. ( 1997; ). Release factor RF3 in E. coli accelerates the dissociation of release factors RF1 and RF2 from the ribosome in a GTP-dependent manner. EMBO J 16, 4126-4133.[CrossRef]
    [Google Scholar]
  38. Freistroffer, D. V., Kwiatkowski, M., Buckingham, R. H. & Ehrenberg, M. ( 2000; ). The accuracy of codon recognition by polypeptide release factors. Proc Natl Acad Sci USA 97, 2046-2051.[CrossRef]
    [Google Scholar]
  39. Frolova, L., Le Goff, X., Rasmussen, H. H. & 9 other authors ( 1994; ). A highly conserved eukaryotic protein family possessing properties of polypeptide chain release factor. Nature 372, 701–703.[CrossRef]
    [Google Scholar]
  40. Frolova, L. Y., Tsivkovskii, R. Y., Sivolobova, G. F., Oparina, N. Y., Serpinsky, O. I., Blinov, V. M., Tatkov, S. I. & Kisselev, L. L. ( 1999; ). Mutations in the highly conserved GGQ motif of class 1 polypeptide release factors abolish ability of human eRF1 to trigger peptidyl-tRNA hydrolysis. RNA 5, 1014-1020.[CrossRef]
    [Google Scholar]
  41. Gesteland, R. F. & Atkins, J. F. ( 1996; ). Recoding: dynamic reprogramming of translation. Annu Rev Biochem 65, 741-768.[CrossRef]
    [Google Scholar]
  42. Glover, J. R., Kowal, A. S., Schirmer, E. C., Patino, M. M., Liu, J. J. & Lindquist, S. ( 1997; ). Self-seeded fibers formed by Sup35, the protein determinant of [PSI +], a heritable prion-like factor of S. cerevisiae. Cell 89, 811-819.[CrossRef]
    [Google Scholar]
  43. Goelet, P., Lomonossoff, G. P., Butler, P. J. G., Akam, M. E., Gait, M. J. & Kam, J. ( 1982; ). Nucleotide sequence of tobacco mosaic virus RNA. Proc Natl Acad Sci USA 79, 5818-5822.[CrossRef]
    [Google Scholar]
  44. Grant, C. M. & Hinnebusch, A. G. ( 1994; ). Effect of sequence context at stop codons on efficiency of reinitiation in GCN4 translational control. Mol Cell Biol 14, 606-618.
    [Google Scholar]
  45. Grant, C. M., Miller, P. F. & Hinnebusch, A. G. ( 1995; ). Sequences 5′ of the first upstream open reading frame in GCN4 mRNA are required for efficient translational reinitiation. Nucleic Acids Res 23, 3980-3988.[CrossRef]
    [Google Scholar]
  46. Grentzmann, G., Brechemier-Baey, D., Heurgue, V., Mora, L. & Buckingham, R. H. ( 1994; ). Localization and characterization of the gene encoding release factor RF3 in Escherichia coli. Proc Natl Acad Sci USA 91, 5848-5852.[CrossRef]
    [Google Scholar]
  47. Grentzmann, G., Brechemier-Baey, D., Heurgue-Hamard, V. & Buckingham, R. H. ( 1995; ). Function of polypeptide-chain release factor RF3 in Escherichia coli – RF3 action in termination is predominantly at UGA-containing stop signals. J Biol Chem 270, 10595-10600.[CrossRef]
    [Google Scholar]
  48. Grimm, M., Brunen Nieweler, C., Junker, V., Heckmann, K. & Beier, H. ( 1998; ). The hypotrichous ciliate Euplotes octocarinatus has only one type of tRNA(cys) with GCA anticodon encoded on a single macronuclear DNA molecule. Nucleic Acids Res 26, 4557-4565.[CrossRef]
    [Google Scholar]
  49. Guilley, H., Wipf-Scheibel, C., Richards, K., Lecoq, H. & Jonard, G. ( 1994; ). Nucleotide sequence of cucurbit aphid-borne yellows luteovirus. Virology 202, 1012-1017.[CrossRef]
    [Google Scholar]
  50. Hanyu, N., Kuchino, Y., Nishimura, S. & Beier, H. ( 1986; ). Dramatic events in ciliate evolution – alteration of UAA and UAG termination codons to glutamine codons due to anticodon mutations in two tetrahymena transfer-RNAsGln. EMBO J 5, 1307-1311.
    [Google Scholar]
  51. Heurgue-Hamard, V., Karimi, R., Mora, L., MacDougall, J., Leboeuf, C., Grentzmann, G., Ehrenberg, M. & Buckingham, R. H. ( 1998; ). Ribosome release factor RF4 and termination factor RF3 are involved in dissociation of peptidyl-tRNA from the ribosome. EMBO J 17, 808-816.[CrossRef]
    [Google Scholar]
  52. Hinnebusch, A. G. ( 1997; ). Translational regulation of yeast GCN4. A window on factors that control initiator-tRNA binding to the ribosome. J Biol Chem 272, 21661-21664.[CrossRef]
    [Google Scholar]
  53. Hoshino, S., Imai, M., Mizutani, M., Kikuchi, Y., Hanaoka, F., Ui, M. & Katada, T. ( 1998; ). Molecular cloning of a novel member of the eukaryotic polypeptide chain-releasing factors (eRF). Its identification as eRF3 interacting with eRF1. J Biol Chem 273, 22254-22259.[CrossRef]
    [Google Scholar]
  54. Hoshino, S., Imai, M., Kobayashi, T., Uchida, N. & Katada, T. ( 1999; ). The eukaryotic polypeptide chain releasing factor (eRF3/GSPT) carrying the translation termination signal to the 3′-poly(A) tail of mRNA. J Biol Chem 274, 16677-16680.[CrossRef]
    [Google Scholar]
  55. Inagaki, Y. & Doolittle, W. F. ( 2000; ). Evolution of the eukaryote translation termination system: origins of release factors. Mol Biol Evol 17, 882-889.[CrossRef]
    [Google Scholar]
  56. Inamine, J. M., Ho, K.-C., Loechel, S. & Hu, P.-C. ( 1990; ). Evidence that UGA is read as a tryptophan codon rather than as a stop codon by Mycoplasma pneumoniae, Mycoplasma genitalium and Mycoplasma gallisepticum. J Bacteriol 172, 504-506.
    [Google Scholar]
  57. Ishikawa, M., Meshi, T., Motoyoshi, F., Takamatsu, N. & Okada, Y. ( 1986; ). mutagenesis of the putative replicase genes of tobacco mosaic virus. Nucleic Acids Res 14, 8291-8305.[CrossRef]
    [Google Scholar]
  58. Ito, K., Ebihara, K., Uno, M. & Nakamura, Y. ( 1996; ). Conserved motifs in prokaryotic and eukaryotic polypeptide release factors: tRNA-protein mimicry hypothesis. Proc Natl Acad Sci USA 93, 5443-5448.[CrossRef]
    [Google Scholar]
  59. Ito, K., Ebihara, K. & Nakamura, Y. ( 1998a; ). The stretch of C-terminal acidic amino acids of translational release factor eRF1 is a primary binding site for eRF3 of fission yeast. RNA 4, 958-972.[CrossRef]
    [Google Scholar]
  60. Ito, K., Uno, M. & Nakamura, Y. ( 1998b; ). Single amino acid substitution in prokaryote polypeptide release factor 2 permits it to terminate translation at all three stop codons. Proc Natl Acad Sci USA 95, 8165-8169.[CrossRef]
    [Google Scholar]
  61. Ito, K., Uno, M. & Nakamura, Y. ( 2000; ). A tripeptide ‘anticodon’ deciphers stop codons in messenger RNA. Nature 403, 680-684.[CrossRef]
    [Google Scholar]
  62. Jalajakumari, M. B., Thomas, C. J., Halter, R. & Manning, P. A. ( 1989; ). Genes for biosynthesis and assembly of CS3 pili of CFA/II enterotoxigenic Escherichia coli: novel regulation of pilus production by bypassing an amber codon. Mol Microbiol 3, 1685-1695.[CrossRef]
    [Google Scholar]
  63. Janosi, L., Ricker, R. & Kaji, A. ( 1996; ). Dual functions of ribosome recycling factor in protein biosynthesis: disassembling the termination complex and preventing translational errors. Biochimie 78, 959-969.[CrossRef]
    [Google Scholar]
  64. Janosi, L., Mottagui-Tabar, S., Isaksson, L. A. & 7 other authors ( 1998; ). Evidence for in vivo ribosome recycling, the fourth step in protein biosynthesis. EMBO J 17, 1141–1151.[CrossRef]
    [Google Scholar]
  65. Karamyshev, A. L., Ito, K. & Nakamura, Y. ( 1999; ). Polypeptide release factor eRF1 from Tetrahymena thermophila: cDNA cloning, purification and complex formation with yeast eRF3. FEBS Lett 457, 483-488.[CrossRef]
    [Google Scholar]
  66. Karimi, R., Pavlov, M. Y., Heurgue-Hamard, V., Buckingham, R. H. & Ehrenberg, M. ( 1998; ). Initiation factors IF1 and IF2 synergistically remove peptidyl-tRNAs with short polypeptides from the p-site of translating Escherichia coli ribosomes. J Mol Biol 281, 241-252.[CrossRef]
    [Google Scholar]
  67. Karimi, R., Pavlov, M. Y., Buckingham, R. H. & Ehrenberg, M. ( 1999; ). Novel roles for classical factors at the interface between translation termination and initiation. Mol Cell 3, 601-609.[CrossRef]
    [Google Scholar]
  68. Keeling, P. J. & Doolittle, W. F. ( 1997; ). Widespread and ancient distribution of a noncanonical genetic code in diplomonads. Mol Biol Evol 14, 895-901.[CrossRef]
    [Google Scholar]
  69. Kromayer, M., Wilting, R., Tormay, P. & Bock, A. ( 1996; ). Domain structure of the prokaryotic selenocysteine-specific elongation factor SelB. J Mol Biol 262, 413-420.[CrossRef]
    [Google Scholar]
  70. Kuchino, Y., Hanyu, N., Tashiro, F. & Nishimura, S. ( 1985; ). Tetrahymena thermophila glutamine tRNA and its gene that corresponds to UAA termination codon. Proc Natl Acad Sci USA 82, 4758-4762.[CrossRef]
    [Google Scholar]
  71. Lang, A., Friemert, C. & Gassen, H. G. ( 1989; ). On the role of the termination factor RF-2 and the 16S RNA in protein synthesis. Eur J Biochem 180, 547-554.[CrossRef]
    [Google Scholar]
  72. Legoff, X., Philippe, M. & Jean-Jean, O. ( 1997; ). Overexpression of human release factor 1 alone has an antisuppressor effect in human cells. Mol Cell Biol 17, 3164-3172.
    [Google Scholar]
  73. Leng, P., Klatte, D. H., Schumann, G., Boeke, J. D. & Steck, T. L. ( 1998; ). , an LTR retrotransposon of Dictyostelium. Nucleic Acids Res 26, 2008-2015.[CrossRef]
    [Google Scholar]
  74. Liu, J. J. & Lindquist, S. ( 1999; ). Oligopeptide-repeat expansions modulate ‘protein-only’ inheritance in yeast. Nature 400, 573-576.[CrossRef]
    [Google Scholar]
  75. McCaughan, K. K., Brown, C. M., Dalphin, M. E., Berry, M. J. & Tate, W. P. ( 1995; ). Translational termination efficiency in mammals is influenced by the base following the stop codon. Proc Natl Acad Sci USA 92, 5431-5435.[CrossRef]
    [Google Scholar]
  76. Major, L. L., Poole, E. S., Dalphin, M. E., Mannering, S. A. & Tate, W. P. ( 1996; ). Is the in-frame termination signal of the Escherichia coli release factor-2 frameshift site weakened by a particularly poor context? Nucleic Acids Res 24, 2673-2678.[CrossRef]
    [Google Scholar]
  77. Matthews, G. D., Goodwin, T. J. D., Butler, M. I., Berryman, T. A. & Poulter, R. T. M. ( 1997; ). pCal, a highly unusual Ty1/copia retrotransposon from the pathogenic yeast Candida albicans. J Bacteriol 179, 7118-7128.
    [Google Scholar]
  78. Meyer, F., Schmidt, H. J., Plumper, E., Hasilik, A., Mersmann, G., Meyer, H. E., Engstrom, A. & Heckmann, K. ( 1991; ). UGA is translated as cysteine in pheromone-3 of Euplotes octocarinatus. Proc Natl Acad Sci USA 88, 3758-3761.[CrossRef]
    [Google Scholar]
  79. Mikuni, O., Ito, K., Moffat, J., Matsumura, K., McCaughan, K., Nobukuni, T., Tate, W. P. & Nakamura, Y. ( 1994; ). Identification of the prfC gene, which encodes peptide-chain-release factor 3 of Escherichia coli. Proc Natl Acad Sci USA 91, 5798-5802.[CrossRef]
    [Google Scholar]
  80. Mottagui-Tabar, S. & Isaksson, L. A. ( 1998; ). The influence of the 5′ codon context on translation termination in Bacillus subtilis and Escherichia coli is similar but different from Salmonella typhimurium. Gene 212, 189-196.[CrossRef]
    [Google Scholar]
  81. Mottagui-Tabar, S., Bjornsson, A. & Isaksson, L. A. ( 1994; ). The second to last amino acid in the nascent peptide as a codon context determinant. EMBO J 13, 249-257.
    [Google Scholar]
  82. Mottagui-Tabar, S., Tuite, M. F. & Isaksson, L. A. ( 1998; ). The influence of 5′ codon context on translation termination in Saccharomyces cerevisiae. Eur J Biochem 257, 249-254.[CrossRef]
    [Google Scholar]
  83. Mueller, P. P. & Hinnebusch, A. G. ( 1986; ). Multiple upstream AUG codons mediate translational control of GCN4. Cell 45, 201-207.[CrossRef]
    [Google Scholar]
  84. Newnam, G. P., Wegrzyn, R. D., Lindquist, S. L. & Chernoff, Y. O. ( 1999; ). Antagonistic interactions between yeast chaperones hsp104 and hsp70 in prion curing. Mol Cell Biol 19, 1325-1333.
    [Google Scholar]
  85. Nissen, P., Kjeldgaard, M., Thirup, S., Polekhina, G., Reshetnikova, L., Clark, B. F. & Nyborg, J. ( 1995; ). Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog. Science 270, 1464-1472.[CrossRef]
    [Google Scholar]
  86. Parsell, D. A., Kowal, A. S., Singer, M. A. & Lindquist, S. ( 1994; ). Protein disaggregation mediated by heat shock protein Hsp104. Nature 372, 475-478.[CrossRef]
    [Google Scholar]
  87. Patino, M. M., Liu, J. J., Glover, J. R. & Lindquist, S. ( 1996; ). Support for the prion hypothesis for inheritance of a phenotypic trait in yeast. Science 273, 622-626.[CrossRef]
    [Google Scholar]
  88. Paushkin, S. V., Kushnirov, V. V., Smirnov, V. N. & Ter-Avanesyan, M. D. ( 1996; ). Propagation of the yeast prion-like [psi(+)] determinant is mediated by oligomerization of the Sup35-encoded polypeptide-chain release factor. EMBO J 15, 3127-3134.
    [Google Scholar]
  89. Paushkin, S. V., Kushnirov, V. V., Smirnov, V. N. & Ter-Avanesyan, M. D. ( 1997a; ). Interaction between yeast Sup45p (eRF1) and Sup35p (eRF3) polypeptide chain release factors: implications for prion-dependent regulation. Mol Cell Biol 17, 2798-2805.
    [Google Scholar]
  90. Paushkin, S. V., Kushnirov, V. V., Smirnov, V. N. & Ter-Avanesyan, M. D. ( 1997b; ). propagation of the prion-like state of yeast Sup35 protein. Science 277, 381-383.[CrossRef]
    [Google Scholar]
  91. Pavlov, M. Y., Freistroffer, D. V., MacDougall, J., Buckingham, R. H. & Ehrenberg, M. ( 1997; ). Fast recycling of Escherichia coli ribosomes requires both ribosome recycling factor (RRF) and release factor RF3. EMBO J 16, 4134-4141.[CrossRef]
    [Google Scholar]
  92. Pelham, H. R. B. ( 1978; ). Leaky UAG termination codon in tobacco mosaic virus RNA. Nature 272, 469-471.[CrossRef]
    [Google Scholar]
  93. Poole, E. S., Brown, C. M. & Tate, W. P. ( 1995; ). The identity of the base following the stop codon determines the efficiency of in-vivo translational termination in Escherichia coli. EMBO J 14, 151-158.
    [Google Scholar]
  94. Poole, E. S., Major, L. L., Mannering, S. A. & Tate, W. P. ( 1998; ). Translation termination in Escherichia coli: three bases following the stop codon crosslink to release factor 2 and affect the decoding efficiency of UGA-containing signals. Nucleic Acids Res 26, 954-960.[CrossRef]
    [Google Scholar]
  95. Pure, G. A., Robinson, G. W., Naumovski, L. & Friedberg, E. C. ( 1985; ). Partial suppression of an ochre mutation in Saccharomyces cerevisiae by multicopy plasmids containing a normal yeast transfer RNA-Gln gene. J Mol Biol 183, 31-42.[CrossRef]
    [Google Scholar]
  96. Robertus, J. D., Ladner, J. E., Finch, J. T., Rhodes, D., Brown, R. S., Clark, B. F. & Klug, A. ( 1974; ). Structure of yeast phenylalanine tRNA at 3 Å resolution. Nature 250, 546-551.[CrossRef]
    [Google Scholar]
  97. Rolland, N., Janosi, L., Block, M. A. & 7 other authors ( 1999; ). Plant ribosome recycling factor homologue is a chloroplastic protein and is bactericidal in Escherichia coli carrying temperature-sensitive ribosome recycling factor. Proc Natl Acad Sci USA 96, 5464–5469.[CrossRef]
    [Google Scholar]
  98. Schirmer, E. C. & Lindquist, S. ( 1997; ). Interactions of the chaperone Hsp104 with yeast Sup35 and mammalian PrP. Proc Natl Acad Sci USA 94, 13932-13937.[CrossRef]
    [Google Scholar]
  99. Scolnick, E., Tomkins, R., Caskey, T. & Nirenberg, M. ( 1968; ). Release factors differing in specificity for terminator codons. Proc Natl Acad Sci USA 61, 768-774.[CrossRef]
    [Google Scholar]
  100. Selmer, M., Al Karadaghi, S., Hirokawa, G., Kaji, A. & Liljas, A. ( 1999; ). Crystal structure of Thermotoga maritima ribosome recycling factor: a tRNA mimic. Science 286, 2349-2352.[CrossRef]
    [Google Scholar]
  101. Skuzeski, J. M. & Atkins, J. F. ( 1990; ). Analysis of leaky viral translation termination codons in vivo by transient expression of improved beta-glucuronidase vectors. Plant Mol Biol 15, 65-79.[CrossRef]
    [Google Scholar]
  102. Skuzeski, J. M., Nichols, L. M., Gesteland, R. F. & Atkins, J. F. ( 1991; ). The signal for a leaky UAG stop codon in several plant viruses includes the two downstream codons. J Mol Biol 218, 365-373.[CrossRef]
    [Google Scholar]
  103. Somogyi, P., Jenner, A. J., Brierley, I. & Inglis, S. C. ( 1993; ). Ribosomal pausing during translation of an RNA pseudoknot. Mol Cell Biol 13, 6931-6940.
    [Google Scholar]
  104. Song, H., Mugnier, P., Webb, H. M., Evans, D. R., Tuite, M. F., Hemmings, B. A. & Barford, D. ( 2000; ). The crystal structure of human eukaryotic release factor eRF1 – mechanism of stop codon recognition and peptidyl-tRNA hydrolysis. Cell 100, 311-321.[CrossRef]
    [Google Scholar]
  105. Stansfield, I. & Tuite, M. F. ( 1994; ). Polypeptide chain termination in Saccharomyces cerevisiae. Curr Genet 25, 385-395.[CrossRef]
    [Google Scholar]
  106. Stansfield, I., Jones, K. M., Kushnirov, V. V. & 7 other authors ( 1995; ). The products of the SUP45 (eRF1) and SUP35 genes interact to mediate translation termination in Saccharomyces cerevisiae. EMBO J 14, 4365–4373.
    [Google Scholar]
  107. Stansfield, I., Eurwilaichitr, L. & Tuite, M. F. ( 1996; ). Depletion in the levels of the release factor eRF1 causes reduction in the efficiency of translation termination in yeast. Mol Microbiol 20, 1135-1143.[CrossRef]
    [Google Scholar]
  108. Suppmann, S., Persson, B. C. & Bock, A. ( 1999; ). Dynamics and efficiency in vivo of UGA-directed selenocysteine insertion at the ribosome. EMBO J 18, 2284-2293.[CrossRef]
    [Google Scholar]
  109. Ter-Avanesyan, M. D., Kushnirov, V. V., Dagkesamanskaya, A. R., Didichenko, S. A., Chernoff, Y. O., Inge-Vechtomov, S. G. & Smirnov, V. N. ( 1993; ). Deletion analysis of the SUP35 gene of the yeast Saccharomyces cerevisiae reveals two non-overlapping functional regions in the encoded protein. Mol Microbiol 7, 683-692.[CrossRef]
    [Google Scholar]
  110. Tuite, M. F., Mundy, C. R. & Cox, B. S. ( 1981; ). Agents that cause a high frequency of genetic change from [psi+] to [psi−] in Saccharomyces cerevisiae. Genetics 98, 691-711.
    [Google Scholar]
  111. Urban, C. & Beier, H. ( 1995; ). Cysteine tRNAs of plant origin as novel UGA suppressors. Nucleic Acids Res 23, 4591-4597.[CrossRef]
    [Google Scholar]
  112. Urban, C., Zerfass, K., Fingerhut, C. & Beier, H. ( 1996; ). UGA suppression by tRNACmCATrp occurs in diverse virus RNAs due to a limited influence of the codon context. Nucleic Acids Res 24, 3424-3430.[CrossRef]
    [Google Scholar]
  113. Vilela, C., Linz, B., Rodrigues-Pousada, C. & McCarthy, J. E. G. ( 1998; ). The yeast transcription factor genes YAP1 and YAP2 are subject to differential control at the levels of both translation and mRNA stability. Nucleic Acids Res 26, 1150-1159.[CrossRef]
    [Google Scholar]
  114. Weiner, A. M. & Weber, K. ( 1973; ). A single UGA codon functions as a natural termination signal in the coliphage Qβ coat protein cistron. J Mol Biol 80, 837-855.[CrossRef]
    [Google Scholar]
  115. Weiss, R. B., Murphy, J. P. & Gallant, J. A. ( 1984; ). Genetic screen for cloned release factor genes. J Bacteriol 158, 362-364.
    [Google Scholar]
  116. Weiss, W. A. & Friedberg, E. C. ( 1986; ). Normal yeast tranfer RNACAG Gln can suppress amber codons and is encoded by an essential gene. J Mol Biol 192, 725-735.[CrossRef]
    [Google Scholar]
  117. Wickner, R. B. ( 1994; ). [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science 264, 566-569.[CrossRef]
    [Google Scholar]
  118. Wills, N. M., Gesteland, R. F. & Atkins, J. F. ( 1991; ). Evidence that a downstream pseudoknot is required for translational read-through of the Moloney murine leukemia virus gag stop codon. Proc Natl Acad Sci USA 88, 6991-6995.[CrossRef]
    [Google Scholar]
  119. Yamao, F., Muto, A., Kawauchi, Y., Iwami, M., Iwagami, S., Azumi, Y. & Osawa, S. ( 1985; ). UGA is read as tryptophan in Mycoplasma capricolum. Proc Natl Acad Sci USA 82, 2306-2309.[CrossRef]
    [Google Scholar]
  120. Yoshinaka, Y., Katoh, I., Copeland, T. D. & Oroszlan, S. ( 1985; ). Murine leukemia virus protease is encoded by the gag-pol gene and is synthesized through suppression of an amber termination codon. Proc Natl Acad Sci U S A 82, 1618-1622.[CrossRef]
    [Google Scholar]
  121. Zhouravleva, G., Frolova, L., Le Goff, X., Le Guellec, R., Inge-Vechtomov, S., Kisselev, L. & Philippe, M. ( 1995; ). Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3. EMBO J 14, 4065-4072.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-2-255
Loading
/content/journal/micro/10.1099/00221287-147-2-255
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error