1887

Abstract

Expression of the UhpT sugar-phosphate transporter in is regulated at the transcriptional level via the UhpABC signalling cascade. Sensing of extracellular glucose 6-phosphate (G6P), by membrane-bound UhpC, modulates a second membrane-bound protein, UhpB, resulting in autophosphorylation of a conserved histidine residue in the cytoplasmic (transmitter) domain of the latter. Subsequently, this phosphoryl group is transferred to a conserved aspartate residue in the response-regulator UhpA, which then initiates transcription, via binding to the promoter region. This study demonstrates the hypothesized transmembrane signal transfer in an ISO membrane set-up, i.e. in a suspension of UhpBC-enriched membrane vesicles, UhpB autophosphorylation is stimulated, in the presence of [γ-P]ATP, upon intra-vesicular sensing of G6P by UhpC. Subsequently, upon addition of UhpA, very rapid and transient UhpA phosphorylation takes place. When P∼UhpA is added to G6P-induced UhpBC-enriched membrane vesicles, rapid UhpA dephosphorylation occurs. So, in the G6P-activated state, UhpB phosphatase activity dominates over kinase activity, even in the presence of saturating amounts of G6P. This may imply that maximal P∼UhpA levels are low and/or that, to keep sufficient P∼UhpA accumulated to induce transcription, the promoter DNA itself is involved in stabilization/sequestration of P∼UhpA.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-12-3345
2001-12-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/12/1473345a.html?itemId=/content/journal/micro/10.1099/00221287-147-12-3345&mimeType=html&fmt=ahah

References

  1. Ames, S. K., Frankema, N. & Kenney, L. J. ( 1999; ). C-terminal DNA binding stimulates N-terminal phosphorylation of the outer membrane protein regulator OmpR from Escherichia coli. Proc Natl Acad Sci USA 96, 11792-11797.[CrossRef]
    [Google Scholar]
  2. Castelli, M. E., Garcia Vescovi, E. & Soncini, F. C. ( 2000; ). The phosphatase activity is the target for Mg2+ regulation of the sensor protein PhoQ in Salmonella. J Biol Chem 275, 22948-22954.[CrossRef]
    [Google Scholar]
  3. Chen, Q. & Kadner, R. J. ( 2000; ). Effect of altered spacing between uhpT promoter elements on transcription activation. J Bacteriol 182, 4430-4436.[CrossRef]
    [Google Scholar]
  4. Dahl, J. L., Wei, B. Y. & Kadner, R. J. ( 1997; ). Protein phosphorylation affects binding of the Escherichia coli transcription activator UhpA to the uhpT promoter. J Biol Chem 272, 1910-1919.[CrossRef]
    [Google Scholar]
  5. Dietz, G. W.Jr ( 1976; ). The hexose phosphate transport system of Escherichia coli. Adv Enzymol Relat Areas Mol Biol 44, 237-259.
    [Google Scholar]
  6. Dutta, R., Qin, L. & Inouye, M. ( 1999; ). Histidine kinases: diversity of domain organization. Mol Microbiol 34, 633-640.[CrossRef]
    [Google Scholar]
  7. Futai, M. & Tanaka, Y. ( 1975; ). Localization of d-lactate dehydrogenase in membrane vesicles prepared by using a french press or ethylenediaminetetraacetate-lysozyme from Escherichia coli. J Bacteriol 124, 470-475.
    [Google Scholar]
  8. Goldenbaum, P. E. & Farmer, K. S. ( 1980; ). uhp-Directed, glucose 6-phosphate membrane receptor in Escherichia coli. J Bacteriol 142, 347-349.
    [Google Scholar]
  9. Grebe, T. W. & Stock, J. B. ( 1999; ). The histidine protein kinase superfamily. Adv Microb Physiol 41, 139-227.
    [Google Scholar]
  10. Island, M. D. & Kadner, R. J. ( 1993; ). Interplay between the membrane-associated UhpB and UhpC regulatory proteins. J Bacteriol 175, 5028-5034.
    [Google Scholar]
  11. Island, M. D., Wei, B. Y. & Kadner, R. J. ( 1992; ). Structure and function of the uhp genes for the sugar phosphate transport system in Escherichia coli and Salmonella typhimurium. J Bacteriol 174, 2754-2762.
    [Google Scholar]
  12. Jourlin, C., Bengrine, A., Chippaux, M. & Mejean, V. ( 1996; ). An unorthodox sensor protein (TorS) mediates the induction of the tor structural genes in response to trimethylamine N-oxide in Escherichia coli. Mol Microbiol 20, 1297-1306.[CrossRef]
    [Google Scholar]
  13. Jung, K., Veen, M. & Altendorf, K. ( 2000; ). K+ and ionic strength directly influence the autophosphorylation activity of the putative turgor sensor KdpD of Escherichia coli. J Biol Chem 275, 40142-40147.[CrossRef]
    [Google Scholar]
  14. Kaback, H. R. ( 1971; ). Bacterial membranes. Methods Enzymol 22, 99-115.
    [Google Scholar]
  15. Kadner, R. J. ( 1995; ). Expression of the sugar-phosphate transport system of Escherichia coli. In Two-Component Signal Transduction , pp. 263-274. Edited by J. A. Hoch & T. J. Silhavy. Washington, DC:American Society for Microbiology.
  16. Kato, A., Tanabe, H. & Utsumi, R. ( 1999; ). Molecular characterization of the PhoP–PhoQ two-component system in Escherichia coli K-12: identification of extracellular Mg2+-responsive promoters. J Bacteriol 181, 5516-5520.
    [Google Scholar]
  17. Kim, D.-j. & Forst, S. ( 2001; ). Genomic analysis of the histidine kinase family in bacteria and archaea. Microbiology 147, 1197-1212.
    [Google Scholar]
  18. Lee, A. I., Delgado, A. & Gunsalus, R. P. ( 1999; ). Signal-dependent phosphorylation of the membrane-bound NarX two-component sensor-transmitter protein of Escherichia coli: nitrate elicits a superior anion ligand response compared to nitrite. J Bacteriol 181, 5309-5316.
    [Google Scholar]
  19. Leonhartsberger, S., Huber, A., Lottspeich, F. & Bock, A. ( 2001; ). The hydH/G genes from Escherichia coli code for a zinc and lead responsive two-component regulatory system. J Mol Biol 307, 93-105.[CrossRef]
    [Google Scholar]
  20. Merkel, T. J., Nelson, D. M., Brauer, C. L. & Kadner, R. J. ( 1992; ). Promoter elements required for positive control of transcription of the Escherichia coli uhpT gene. J Bacteriol 174, 2763-2770.
    [Google Scholar]
  21. Mizuno, T. ( 1997; ). Compilation of all genes encoding two-component phosphotransfer signal transducers in the genome of Escherichia coli. DNA Res 4, 161-168.[CrossRef]
    [Google Scholar]
  22. Montagne, M., Martel, A. & Le Moual, H. ( 2001; ). Characterization of the catalytic activities of the PhoQ histidine protein kinase of Salmonella enterica serovar typhimurium. J Bacteriol 183, 1787-1791.[CrossRef]
    [Google Scholar]
  23. Munson, G. P., Lam, D. L., Outten, F. W. & O’Halloran, T. V. ( 2000; ). Identification of a copper-responsive two-component system on the chromosome of Escherichia coli K-12. J Bacteriol 182, 5864-5871.[CrossRef]
    [Google Scholar]
  24. Nierman, W. C., Feldblyum, T. V. & Laub, M. T. & 34 other authors ( 2001; ). Complete genome sequence of Caulobacter crescentus. Proc Natl Acad Sci USA 98, 4136–4141.[CrossRef]
    [Google Scholar]
  25. Ninfa, A. J. (1996). Regulation of gene transcription by extracellular stimuli. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, pp. 1246–1261. Edited by F. C. Neidhart and others. Washington, DC: American Society for Microbiology.
  26. Ninfa, E. G., Atkinson, M. R., Kamberov, E. S. & Ninfa, A. J. ( 1993; ). Mechanism of autophosphorylation of Escherichia coli nitrogen regulator II (NRII or NtrB): trans-phosphorylation between subunits. J Bacteriol 175, 7024-7032.
    [Google Scholar]
  27. Olekhnovich, I. N., Dahl, J. L. & Kadner, R. J. ( 1999; ). Separate contributions of UhpA and CAP to activation of transcription of the uhpT promoter of Escherichia coli. J Mol Biol 292, 973-986.[CrossRef]
    [Google Scholar]
  28. Parkinson, J. S. & Kofoid, E. C. ( 1992; ). Communication modules in bacterial signaling proteins. Annu Rev Genet 26, 71-112.[CrossRef]
    [Google Scholar]
  29. Perraud, A. L., Weiss, V. & Gross, R. ( 1999; ). Signalling pathways in two-component phosphorelay systems. Trends Microbiol 7, 115-120.[CrossRef]
    [Google Scholar]
  30. Qin, L., Yoshida, T. & Inouye, M. ( 2001; ). The critical role of DNA in the equilibrium between OmpR and phosphorylated OmpR mediated by EnvZ in Escherichia coli. Proc Natl Acad Sci USA 98, 908-913.
    [Google Scholar]
  31. Rabin, R. S. & Stewart, V. ( 1993; ). Dual response regulators (NarL and NarP) interact with dual sensors (NarX and NarQ) to control nitrate- and nitrite-regulated gene expression in Escherichia coli K-12. J Bacteriol 175, 3259-3268.
    [Google Scholar]
  32. Rodrigue, A., Quentin, Y., Lazdunski, A., Mejean, V. & Foglino, M. ( 2000; ). Two-component systems in Pseudomonas aeruginosa: why so many? Trends Microbiol 8, 498-504.[CrossRef]
    [Google Scholar]
  33. Rohwer, J. M., Jensen, P. R., Shinohara, Y., Postma, P. W. & Westerhoff, H. V. ( 1996; ). Changes in the cellular energy state affect the activity of the bacterial phosphotransferase system. Eur J Biochem 235, 225-230.[CrossRef]
    [Google Scholar]
  34. Ronson, C. W., Nixon, B. T. & Ausubel, F. M. ( 1987; ). Conserved domains in bacterial regulatory proteins that respond to environmental stimuli. Cell 49, 579-581.[CrossRef]
    [Google Scholar]
  35. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  36. Shattuck-Eidens, D. M. & Kadner, R. J. ( 1981; ). Exogenous induction of the Escherichia coli hexose phosphate transport system defined by uhplac operon fusions. J Bacteriol 148, 203-209.
    [Google Scholar]
  37. Stock, J. B., Ninfa, A. J. & Stock, A. M. ( 1989; ). Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev 53, 450-490.
    [Google Scholar]
  38. Tuckerman, J. R., Gonzalez, G. & Gilles-Gonzalez, M. A. ( 2001; ). Complexation precedes phosphorylation for two-component regulatory system FixL/FixJ of Sinorhizobium meliloti. J Mol Biol 308, 449-455.[CrossRef]
    [Google Scholar]
  39. Weston, L. A. & Kadner, R. J. ( 1988; ). Role of uhp genes in expression of the Escherichia coli sugar-phosphate transport system. J Bacteriol 170, 3375-3383.
    [Google Scholar]
  40. Williams, S. B. & Stewart, V. ( 1997; ). Discrimination between structurally related ligands nitrate and nitrite controls autokinase activity of the NarX transmembrane signal transducer of Escherichia coli K-12. Mol Microbiol 26, 911-925.[CrossRef]
    [Google Scholar]
  41. Williams, S. B. & Stewart, V. ( 1999; ). Functional similarities among two-component sensors and methyl-accepting chemotaxis proteins suggest a role for linker region amphipathic helices in transmembrane signal transduction. Mol Microbiol 33, 1093-1102.
    [Google Scholar]
  42. Winkler, H. H. ( 1970; ). Compartmentation in the induction of the hexose-6-phosphate transport system of Escherichia coli. J Bacteriol 101, 470-475.
    [Google Scholar]
  43. Wright, J. S. & Kadner, R. J. ( 2001; ). The phosphoryl transfer domain of UhpB interacts with the response regulator UhpA. J Bacteriol 183, 3149-3159.[CrossRef]
    [Google Scholar]
  44. Wright, J. S., Olekhnovich, I. N., Touchie, G. & Kadner, R. J. ( 2000; ). The histidine kinase domain of UhpB inhibits UhpA action at the Escherichia coli uhpT promoter. J Bacteriol 182, 6279-6286.[CrossRef]
    [Google Scholar]
  45. Zientz, E., Bongaerts, J. & Unden, G. ( 1998; ). Fumarate regulation of gene expression in Escherichia coli by the DcuSR (dcuSR genes) two-component regulatory system. J Bacteriol 180, 5421-5425.
    [Google Scholar]
  46. Zimmann, P., Puppe, W. & Altendorf, K. ( 1995; ). Membrane topology analysis of the sensor kinase KdpD of Escherichia coli. J Biol Chem 270, 28282-28288.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-12-3345
Loading
/content/journal/micro/10.1099/00221287-147-12-3345
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error