Histatins are a structurally related family of salivary proteins known as histidine-rich proteins that are produced and secreted by the human major salivary glands. , histatins are potent cytotoxic proteins with selectivity for pathogenic yeasts including . Studies that investigate the mechanism of action of histatin proteins upon this important human pathogen have used a candidacidal assay in which the histatin is applied extracellularly. In order to develop a model system to study the mechanism of histatin action independently from binding and translocation events, the authors constructed strains that contain chromosomally encoded human salivary histatin genes under the control of a regulated promoter. Intracellular expression of either histatin 5 or histatin 3 induced cell killing and ATP release in parallel. Since histatin killing can be initiated solely from intracellular sites, extracellular binding and internalization are preceding transport events. Thus the mechanism of histatin-induced ATP release does not require extracellular binding, and intracellular targets alone can activate ATP release. By employing a codon-optimization strategy it was shown that expression of heterologous sequences in can be a useful tool for functional studies.


Article metrics loading...

Loading full text...

Full text loading...



  1. Ahmed, A., Sesti, F., Ilan, N., Shih, T. M., Sturley, S. L. & Goldstein, S. A. N. (1999). A molecular target for viral killer toxin: TOK1 potassium channels. Cell 99, 283-291.[CrossRef] [Google Scholar]
  2. Backen, A. C., Broadbent, I. D., Fetherston, R. W., Rosamond, J. D. C., Schnell, N. F. & Stark, M. J. (2000). Evaluation of the CaMAL2 promoter for regulated expression of genes in Candida albicans. Yeast 16, 1121-1129.[CrossRef] [Google Scholar]
  3. Beelman, C. A. & Parker, R. (1995). Degradation of mRNA in eukaryotes. Cell 81, 179-183.[CrossRef] [Google Scholar]
  4. Brown, D. H. Jr, Slobodkin, I. V. & Kumamoto, C. A. (1996). Stable transformation and regulated expression of an inducible reporter construct in Candida albicans using restriction enzyme-mediated integration. Mol Gen Genet 251, 75-80. [Google Scholar]
  5. Care, R. S., Trevethick, J., Binley, K. M. & Sudbery, P. E. (1999). The MET3: a new tool for Candida albicans molecular genetics. Mol Microbiol 34, 792-798.[CrossRef] [Google Scholar]
  6. Cormack, B. P., Bertram, G., Egerton, M., Gow, N. A. R., Falkow, S. & Brown, A. J. P. (1997). Yeast-enhanced green fluorescent protein (yEGFP): a reporter of gene expression in Candida albicans. Microbiology 143, 303-311.[CrossRef] [Google Scholar]
  7. Edgerton, M., Koshlukova, S. E., Lo, T. E., Chrzan, B. G., Straubinger, R. M. & Raj, P. A. (1998). Candidacidal activity of salivary histatins: identification of a histatin 5-binding protein on Candida albicans.J Biol Chem 273, 20438-20447.[CrossRef] [Google Scholar]
  8. Geber, A., Williamson, P. R., Rex, J. H., Sweeney, E. C. & Bennett, J. E. (1992). Cloning and characterization of a Candida albicans maltase gene involved in sucrose utilization. J Bacteriol 174, 6992-6996. [Google Scholar]
  9. Helmerhorst, E. J., Breeuwert, P., van’t Hof, W. & 8 other authors (1999). The cellular target of histatin 5 on Candida albicans is the energized mitochondrion. J Biol Chem 274, 7286–7291.[CrossRef] [Google Scholar]
  10. Holm, I. (1986). Codon usage and gene expression. Nucleic Acids Res 14, 3075-3087.[CrossRef] [Google Scholar]
  11. Kelly, R., Miller, S. M., Kurtz, M. B. & Kirsch, D. R. (1987). Directed mutagenesis in Candida albicans: one-step gene disruption to isolate ura3 mutants. Mol Cell Biol 7, 199-207. [Google Scholar]
  12. Koshlukova, S. E., Lloyd, T. L., Araujo, M. W. B. & Edgerton, M. (1999). Salivary histatin 5 induces non-lytic release of ATP from Candida albicans leading to cell death. J Biol Chem 274, 18872-18879.[CrossRef] [Google Scholar]
  13. Koshlukova, S. E., Araujo, M. W. B., Baev, D. & Edgerton, M. (2000). Released ATP is an extracellular cytotoxic mediator in salivary histatin 5-induced killing of Candida albicans.Infect Immun 68, 6848-6856.[CrossRef] [Google Scholar]
  14. Kurtz, M. B., Cortelyou, M. W. & Kirsch, D. R. (1986). Integrative transformation of Candida albicans, using a cloned Candida albicansADE2 gene. Mol Cell Biol 6, 142-149. [Google Scholar]
  15. Lehrer, R. I., Ganz, T. & Selsted, M. E. (1991). Defensins: endogenous antibiotic peptides of animal cells. Cell 64, 229-230.[CrossRef] [Google Scholar]
  16. Losberger, C. & Ernst, J. F. (1989). Sequence of the Candida albicans gene encoding actin. Nucleic Acids Res 17, 9488.[CrossRef] [Google Scholar]
  17. Maneu, V., Cervera, A. M., Martinez, J. P. & Gozalbo, D. (1996). Molecular cloning and characterization of a Candida albicans gene (EFB1) coding for the elongation factor EF-1β. FEMS Microbiol Lett 145, 157-162. [Google Scholar]
  18. Morschhauser, J., Michel, S. & Hacker, J. (1998). Expression of chromosomally integrated, single-copy GFP gene in Candida albicans, and its use as a reporter of gene regulation. Mol Gen Genet 257, 412-420.[CrossRef] [Google Scholar]
  19. O’Connell, B. C., Xu, T., Walsh, T. J., Sein, T., Mastrangeli, A., Crystal, R. G., Oppenheim, F. G. & Baum, B. J. (1996). Transfer of a gene encoding the anticandidal protein histatin 3 to salivary glands. Hum Gene Ther 7, 2255-2261.[CrossRef] [Google Scholar]
  20. Odds, F. C. (1988).Candida and Candidiosis, a Review and Bibliography, 2nd edn. London: Baillière Tindall.
  21. Odds, F. C. (1994).Candida species and virulence. ASM News 60, 313-318. [Google Scholar]
  22. Oppenheim, F. G., Yang, Y. C., Diamond, R. D., Hyslop, D., Offner, G. D. & Troxler, R. F. (1986). The primary structure and functional characterization of the neutral histidine-rich polypeptide from human parotid secretion. J Biol Chem 261, 1177-1182. [Google Scholar]
  23. Oppenheim, F. G., Xu, T., McMillian, F. M., Levitz, S. M., Diamond, R. D., Offner, G. D. & Troxler, R. F. (1988). Histatins, a novel family of histidine-rich proteins in human parotid secretion. Isolation, characterization, primary structure and fungistatic effects on Candida albicans.J Biol Chem 263, 7472-7477. [Google Scholar]
  24. Ross, J. (1995). mRNA stability in mammalian cells. Microbiol Rev 59, 423-450. [Google Scholar]
  25. Sabatini, L. M., Carlock, L. R., Johnson, G. W. & Azen, E. A. (1987). cDNA cloning and chromosomal localization (4q11-13) of a gene for statherin, a regulator of calcium in saliva. Am J Hum Genet 41, 1048-1060. [Google Scholar]
  26. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989).Molecular Cloning: a Laboratory Manual, 2nd edn., Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  27. Santos, M. A. & Tuite, M. F. (1995). The CUG codon is decoded in vivo as serine and not leucine in Candida albicans.Nucleic Acids Res 23, 1481-1486.[CrossRef] [Google Scholar]
  28. Schaller, M., Schafer, W., Korting, H. C. & Hube, B. (1998). Differential expression of secreted aspartyl proteinases in a model of human oral candidosis and patient samples from the oral cavity. Mol Microbiol 29, 605-615.[CrossRef] [Google Scholar]
  29. Swoboda, R. K., Broadbent, I. D., Bertram, J., Budge, S., Gooday, G., Gow, A. R. & Brown, A. J. P. (1995). Structure and regulation of a Candida albicans RP10 gene which encodes an immunogenic protein homologous to Saccharomyces cerevisiae ribosomal protein 10. J Bacteriol 177, 1239-1246. [Google Scholar]
  30. Te’o, V. S., Cziferszky, A. E., Bergquist, P. L. & Nevalainen, H. K. M. (2000). Codon optimization of xylanase gene xynB from the thermophilic bacterium Dictyoglomus thermophilum for expression in the filamentous fungus Trichoderma reesei.FEMS Microbiol Lett 190, 13-19.[CrossRef] [Google Scholar]
  31. vanderSpek, J. C., Offner, G. D., Troxler, R. F. & Oppenheim, F. G. (1990). Molecular cloning of human submandibular histatins. Arch Oral Biol 35, 137-143.[CrossRef] [Google Scholar]
  32. Wang, A. M., Doyle, M. V. & Mark, D. F. (1989). Quantitation of mRNA by the polymerase chain reaction. Proc Natl Acad Sci USA 86, 9717-9721.[CrossRef] [Google Scholar]
  33. Xu, T., Levitz, S. M., Diamond, R. D. & Oppenheim, F. G. (1991). Anticandidal activity of major human salivary histatins. Infect Immun 59, 2549-2554. [Google Scholar]
  34. Xu, Y., Ambukar, I., Yamagishi, H., Swaim, W., Walsh, T. J. & O’Connell, B. C. (1999). Histatin 3-mediated killing of Candida albicans: effect of extracellular salt concentration on binding and internalization. Antimicrob Agents Chemother 43, 2256-2262. [Google Scholar]
  35. Yanisch-Perron, C., Vieira, J. & Messing, J. (1985). Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33, 103-119.[CrossRef] [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error