1887

Abstract

The 168 genome contains an array of alternative σ factors, many of which play important roles in reprogramming expression during stress and sporulation. The role of the different σ factors during outgrowth, when the germinated endospore is converted back to a vegetative cell, is less well characterized. The activity of the alternative σ factors σ, σ and σ during endospore outgrowth was analysed by Northern blotting and reporter assays. While σ and σ were transcriptionally active during outgrowth, σ-dependent transcription was not observed until after the first cell division, when growth slowed. Using an IPTG-controllable copy of , an optimal level of expression was required to maintain growth rate at the end of outgrowth. The genes encoding the putative extracytoplasmic function (ECF) σ factors σ, σ, σ, σ and YlaC were insertionally inactivated using pMUTIN4. These strains, together with and mutants, were tested to determine their role and measure their expression during endospore outgrowth. Transcripts or β-galactosidase activity were observed for each of the ECF σ factors early after germination. With the exception of MJH003 (), which showed an exacerbated salt stress defect, inactivation of the ECF σ factor genes did not affect outgrowth in the conditions tested.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-11-2933
2001-11-01
2019-12-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/11/1472933a.html?itemId=/content/journal/micro/10.1099/00221287-147-11-2933&mimeType=html&fmt=ahah

References

  1. Albertini, A. M. & Galizzi, A. ( 1975; ). Mutant of Bacillus subtilis with a temperature-sensitive lesion in ribonucleic acid synthesis during germination. J Bacteriol 124, 14-25.
    [Google Scholar]
  2. Albertini, A. M., Caramori, T., Henner, D., Ferrari, E. & Galizzi, A. ( 1987; ). Nucleotide sequence of the outB locus of Bacillus subtilis and regulation of its expression. J Bacteriol 169, 1480-1484.
    [Google Scholar]
  3. Anagnostopoulos, C. & Spizizen, J. ( 1961; ). Requirements for transformation in Bacillus subtilis. J Bacteriol 81, 741-746.
    [Google Scholar]
  4. Antelmann, H., Schmid, R. & Hecker, M. ( 1997; ). The NAD synthetase NadE (OutB) of Bacillus subtilis is a σB-dependent general stress protein. FEMS Microbiol Lett 153, 405-409.[CrossRef]
    [Google Scholar]
  5. Arnau, J., Sorensen, K. I., Appel, K. F., Vogensen, F. K. & Hammer, K. ( 1996; ). Analysis of heat shock gene expression in Lactococcus lactis MG1363. Microbiology 142, 1685-1691.[CrossRef]
    [Google Scholar]
  6. Carter, H. L.III, Wang, L.-F., Doi, R. H. & Moran, C. P.Jr ( 1988; ). rpoD operon promoter used by σH-RNA polymerase in Bacillus subtilis. J Bacteriol 170, 1617-1621.
    [Google Scholar]
  7. Errington, J. ( 1993; ). Bacillus subtilis sporulation: regulation of gene expression and control of morphogenesis. Microbiol Rev 57, 1-33.
    [Google Scholar]
  8. Galizzi, A., Gorrini, F., Rollier, A. & Polsinelli, M. ( 1973; ). Mutants of Bacillus subtilis temperature sensitive in the outgrowth phase of spore germination. J Bacteriol 113, 1482-1490.
    [Google Scholar]
  9. Garrick-Silversmith, L. & Torriani, A. ( 1973; ). Macromolecular syntheses during germination and outgrowth of Bacillus subtilis spores. J Bacteriol 114, 507-516.
    [Google Scholar]
  10. Gould, G. W. (1964). Effect of food preservatives on the growth of bacteria from spores. In The Action, Use and Natural Occurrence of Microbial Inhibitors in Foods. Fourth International Symposium on Food Microbiology, Göteborg, Sweden.
  11. Haldenwang, W. G. ( 1995; ). The sigma factors of Bacillus subtilis. Microbiol Rev 59, 1-30.
    [Google Scholar]
  12. Hanahan, D. ( 1983; ). Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166, 557-580.[CrossRef]
    [Google Scholar]
  13. Hecker, M. ( 1983; ). Molecular biology of Bacillus spore outgrowth. Z Allg Mikrobiol 23, 517-535.[CrossRef]
    [Google Scholar]
  14. Hecker, M. & Volker, U. ( 1998; ). Non-specific, general and multiple stress resistance of growth-restricted Bacillus subtilis cells by the expression of the σB regulon. Mol Microbiol 29, 1129-1136.[CrossRef]
    [Google Scholar]
  15. Hecker, M., Wachlin, G., Dunger, A. & Mach, F. ( 1984; ). Protein synthesis during outgrowth of Bacillus subtilis spores. A two-dimensional gel electrophoresis study. FEMS Microbiol Lett 25, 57-60.[CrossRef]
    [Google Scholar]
  16. Hicks, K. A. & Grossman, A. ( 1996; ). Altering the level and regulation of the major sigma factor of RNA polymerase affects gene expression and development in Bacillus subtilis. Mol Microbiol 20, 201-212.[CrossRef]
    [Google Scholar]
  17. Hilden, I., Krath, B. N. & Hove-Jensen, B. ( 1995; ). Tricistronic operon expression of the genes gcaD (tms), which encodes N-acetylglucosamine 1-phosphate uridyltransferase, prs, which encodes phosphoribosyl diphosphate synthetase, and ctc in vegetative cells of Bacillus subtilis. J Bacteriol 177, 7280-7284.
    [Google Scholar]
  18. Horsburgh, M. & Moir, A. ( 1999; ). σM, an ECF RNA polymerase sigma factor of Bacillus subtilis 168, is essential for growth and survival in high concentrations of salt. Mol Microbiol 32, 41-50.[CrossRef]
    [Google Scholar]
  19. Huang, X. & Helmann, J. D. ( 1998; ). Identification of target promoters for the Bacillus subtilis σx factor using a consensus-directed search. J Mol Biol 279, 165-173.[CrossRef]
    [Google Scholar]
  20. Huang, X., Decatur, A., Sorokin, A. & Helmann, J. D. ( 1997; ). The Bacillus subtilis σx protein is an extracytoplasmic function sigma factor contributing to survival at high temperature. J Bacteriol 179, 2915-2921.
    [Google Scholar]
  21. Huang, X., Fredrick, K. L. & Helmann, J. D. ( 1998; ). Promoter recognition by Bacillus subtilis σw: autoregulation and partial overlap with σx regulon. J Bacteriol 180, 3765-3770.
    [Google Scholar]
  22. Huang, X., Gaballa, A., Cao, M. & Helmann, J. D. ( 1999; ). Identification of target promoters for the Bacillus subtilis extracytoplasmic function σ factor, σW. Mol Microbiol 31, 361-371.[CrossRef]
    [Google Scholar]
  23. Kunst, F. & Rapoport, G. ( 1995; ). Salt stress is an environmental signal affecting degradative enzyme synthesis in Bacillus subtilis. J Bacteriol 177, 2403-2407.
    [Google Scholar]
  24. Kunst, F., Ogasawara, N., Moszer, I. & 148 other authors ( 1997; ). The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390, 249–256.[CrossRef]
    [Google Scholar]
  25. Lonetto, M. A., Brown, K. L., Rudd, K. E. & Buttner, M. J. ( 1994; ). Analysis of the Streptomyces coelicolor sigE gene reveals the existence of a subfamily of eubacterial RNA polymerase σ factors involved in the regulation of extracytoplasmic functions. Proc Natl Acad Sci 91, 7573-7577.[CrossRef]
    [Google Scholar]
  26. Lord, M., Barilla, D. & Yudkin, M. D. ( 1999; ). Replacement of vegetative σA by sporulation specific σF as a component of the RNA polymerase holoenzyme in sporulating Bacillus subtilis. J Bacteriol 181, 2346-2350.
    [Google Scholar]
  27. Melly, E. & Setlow, P. ( 2001; ). Heat shock proteins do not influence wet heat resistance of Bacillus subtilis spores. J Bacteriol 183, 779-784.[CrossRef]
    [Google Scholar]
  28. Mullin, H. B. & Hansen, J. N. ( 1981; ). Two dimensional polyacrylamide gel analysis of protein synthesized during outgrowth of Bacillus subtilis 168. In Sporulation and Germination , pp. 246-248. Edited by H. S. Levinson, A. L. Sonenshein & D. J. Tipper. Washington, DC:American Society for Microbiology.
  29. Murray, T., Popham, D. L. & Setlow, P. ( 1997; ). Identification and characterization of pbpA encoding Bacillus subtilis penicillin-binding protein 2A. J Bacteriol 179, 3021-3029.
    [Google Scholar]
  30. Nessi, C., Albertini, A. M., Speranza, M. L. & Galizzi, A. ( 1995; ). The outB gene of Bacillus subtilis codes for NAD synthetase. J Biol Chem 270, 6181-6185.[CrossRef]
    [Google Scholar]
  31. Qi, F. X. & Doi, R. H. ( 1990; ). Localization of a second SigH promoter in the Bacillus subtilis sigA operon and regulation of dnaE expression by the promoter. J Bacteriol 172, 5631-5636.
    [Google Scholar]
  32. Qi, F. X., He, X. S. & Doi, R. H. ( 1991; ). Localization of a new promoter, P5, in the sigA operon of Bacillus subtilis and its regulation in some spo mutants. J Bacteriol 173, 7050-7054.
    [Google Scholar]
  33. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  34. Setlow, P. ( 1983; ). Germination and outgrowth. In The Bacterial Spore , pp. 210-254. Edited by A. Hurst & G. W. Gould. London:Academic Press.
  35. Sloma, A. & Smith, I. ( 1979; ). RNA synthesis during spore germination in Bacillus subtilis. Mol Gen Genet 175, 113-120.[CrossRef]
    [Google Scholar]
  36. Stewart, G. S. A. B., Johnstone, K., Hagelberg, E. & Ellar, D. J. ( 1981; ). Commitment of bacterial spores to germinate: a measure of the trigger reaction. Biochem J 198, 101-106.
    [Google Scholar]
  37. Turner, M. & Helmann, J. D. ( 2000; ). Mutations in multidrug efflux homologs, sugar isomerases, and antimicrobial biosynthesis genes differentially elevate activity of the σX and σW factors in Bacillus subtilis. J Bacteriol 182, 5202-5210.[CrossRef]
    [Google Scholar]
  38. Vagner, V., Dervyn, E. & Ehrlich, S. D. ( 1998; ). A vector for systematic gene inactivation in Bacillus subtilis. Microbiology 144, 3097-3104.[CrossRef]
    [Google Scholar]
  39. Vinter, V. ( 1970; ). Germination and outgrowth: effect of inhibitors. J Appl Bacteriol 33, 50-59.[CrossRef]
    [Google Scholar]
  40. Wachlin, G. & Hecker, M. ( 1982; ). Activation of protein biosynthesis in outgrowing spores of Bacillus subtilis. Z Allg Mikrobiol 22, 495-502.[CrossRef]
    [Google Scholar]
  41. Wang, L.-F. & Doi, R. H. ( 1987; ). Promoter switching during development and the termination site of the σ43 operon of Bacillus subtilis. Mol Gen Genet 207, 114-119.[CrossRef]
    [Google Scholar]
  42. Zuber, U., Drzewiecki, K. & Hecker, M. ( 2001; ). Putative sigma factor SigI (YkoZ) of Bacillus subtilis is induced by heat shock. J Bacteriol 183, 1472-1475.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-11-2933
Loading
/content/journal/micro/10.1099/00221287-147-11-2933
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error