1887

Abstract

Polycations [protamine, polymyxin B nonapeptide (PMBN) and polyethyleneimine (PEI)] have been shown to increase the cell wall permeability of to highly hydrophobic compounds, as manifested in enhanced intracellular bioconversion of β-sitosterol to 4-androsten-3,17-dione (AD) and 1,4-androstadien-3,17-dione (ADD), and cell sensitization to erythromycin and rifampicin. The quantity of AD(D) formed per biomass unit was twice as high in the presence of PMBN and PEI, and three times higher with protamine. The sensitization factor, i.e. the MIC ratio of the control bacteria to those exposed to polycations, ranged from 4 to 16, depending on the polycation/antibiotic combination. Non-covalently bound free lipids were extracted from the control and polycation-treated cells and fractionated with the use of chloroform, acetone and methanol. Chloroform- and acetone-eluted fractions (mainly neutral lipids and glycolipids, respectively) showed significant polycation-induced alterations in their quantitative and qualitative composition. The fatty acid profile of neutral lipids was reduced in comparison to control, whereas acetone-derived lipids were characterized by a much higher level of octadecenoic acid (C) and a considerably lower content of docosanoic acid (C), the marker compound of mycolate-containing glycolipids. Methanol-eluted fractions remained unaltered. Cell-wall-linked mycolates obtained from delipidated cells were apparently unaffected by the action of polycations, as judged from the TLC pattern of mycolic acid subclasses, the mean weight of mycolate preparations and the C acid content in the mycolates, determined by GC/MS and pyrolysis GC. The results suggest the involvement of the components of non-covalently bound lipids in the outer layer in the permeability barrier.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-10-2769
2001-10-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/10/1472769a.html?itemId=/content/journal/micro/10.1099/00221287-147-10-2769&mimeType=html&fmt=ahah

References

  1. Ariza, M. A., Martin-Luengo, F. & Valero-Guillen, P. L. ( 1994; ). A family of diacyltrehaloses isolated from Mycobacterium fortuitum. Microbiology 140, 1898-1994.
    [Google Scholar]
  2. Besra, G. S. & Chatterjee, D. ( 1994; ). Lipids and carbohydrates of Mycobacterium tuberculosis. In Tuberculosis: Pathogenesis, Protection, and Control , pp. 285-306. Edited by B. Bloom. Washington, DC:American Society for Microbiology.
  3. Brennan, P. J. ( 1988; ). Mycobacterium and other actinomycetes. In Microbial Lipids , pp. 251-278. Edited by C. Ratledge & S. G. Wilkinson. London:Academic Press.
  4. Brennan, P. J. & Nikaido, H. ( 1995; ). The envelope of mycobacteria. Annu Rev Biochem 64, 29-63.[CrossRef]
    [Google Scholar]
  5. Brzostek, A. M., Pawłowicz, M. & Dziadek, J. ( 2001; ). The DNA probe and PCR assay as useful tools to control an acid fast bacteria-dependent biotechnological process. Acta Microbiol Pol 50, 37-44.
    [Google Scholar]
  6. Christensen, H., Garton, N. J., Horobin, R. W., Minnikin, D. E. & Barer, M. R. ( 1999; ). Lipid domains of mycobacteria studied with fluorescent molecular probes. Mol Microbiol 31, 1561-1572.[CrossRef]
    [Google Scholar]
  7. Daffé, M. & Draper, P. ( 1998; ). The envelope layers of mycobacteria with reference to their pathogenicity. Adv Microb Physiol 39, 131-203.
    [Google Scholar]
  8. David, H. L., Rastogi, N., Clavel-Seres, S. & Clement, F. ( 1988; ). Alteration in the outer wall architecture caused by the inhibition of mycoside C biosynthesis in Mycobacterium avium. Curr Microbiol 17, 61-68.[CrossRef]
    [Google Scholar]
  9. Dubnau, E., Chan, J., Raynaud, C., Mohan, V. P., Laneelle, M. A., Yu, K., Quemard, A., Smith, I. & Daffé, M. ( 2000; ). Oxygenated mycolic acids are necessary for virulence of Mycobacterium tuberculosis in mice. Mol Microbiol 36, 630-637.
    [Google Scholar]
  10. Gamian, A., Mordarska, H., Ekiel, I., Ulrich, J., Szponar, B. & Defaye, J. ( 1996; ). Structural studies of the major glycolipid from Saccharopolyspora genus. Carbohydr Res 296, 55-67.[CrossRef]
    [Google Scholar]
  11. Garcia-Borcelo, M., Luquin, M., Belda, F. & Ausina, V. ( 1993; ). Gas chromatographic whole-cell fatty acid analysis as an aid for the identification of mixed mycobacterial cultures. J Chromatogr 617, 299-303.[CrossRef]
    [Google Scholar]
  12. Helander, I. M., Alakomi, H.-L., Latva-Kala, K. & Koski, P. ( 1997; ). Polyethyleneimine is an effective permeabilizer of Gram-negative bacteria. Microbiology 143, 3193-3199.[CrossRef]
    [Google Scholar]
  13. Helander, I. M., Latva-Kala, K. & Lounatmaa, K. ( 1998; ). Permeabilizing action of polyethyleneimine on Salmonella typhimurium involves disruption of the outer membrane and interactions with lipopolysaccharide. Microbiology 144, 385-390.[CrossRef]
    [Google Scholar]
  14. Jackson, M., Raynaud, C., Lanéelle, M. A., Guilhot, Ch., Laurent-Winter, Ch., Ensergueix, D., Gicquel, B. & Daffé, M. ( 1999; ). Inactivation of the antigen 85C gene profoundly affects the mycolate content and alters the permeability of the Mycobacterium tuberculosis cell envelope. Mol Microbiol 31, 1573-1587.[CrossRef]
    [Google Scholar]
  15. Jarlier, V. & Nikaido, H. ( 1990; ). Permeability barrier to hydrophilic solutes in Mycobacterium chelonae. J Bacteriol 172, 1418-1423.
    [Google Scholar]
  16. Kaneda, K., Imaizumi, S., Mizuno, S., Baba, T., Tsukamura, M. & Yano, I. ( 1988; ). Structure and molecular species composition of three homologous series of α-mycolic acids from Mycobacterium sp. J Gen Microbiol 134, 2213-2229.
    [Google Scholar]
  17. Kaneda, K., Imaizumi, S. & Yano, I. ( 1995; ). Distribution of C22-, C24- and C26-α-unit-containing mycolic acid homologues in mycobacteria. Microbiol Immunol 39, 563-570.[CrossRef]
    [Google Scholar]
  18. Koul, A. & Prasad, R. ( 1996; ). Extraction of membrane lipids. In Manual on Membrane Lipids , pp. 36-51. Edited by R. Prasad. Berlin, Heidelberg:Springer.
  19. Lechevalier, M. P., Horan, A. C. & Lechevalier, H. ( 1971; ). Lipid composition in the classification of nocardiae and mycobacteria. J Bacteriol 105, 313-318.
    [Google Scholar]
  20. Liu, J., Barry, C. E., Besra, G. S. & Nikaido, H. ( 1996; ). Mycolic acid structure determines the fluidity of the mycobacterial cell wall. J Biol Chem 271, 29545-29551.[CrossRef]
    [Google Scholar]
  21. Liu, J., Rosenberg, E. Y. & Nikaido, H. ( 1995; ). Fluidity of the lipid domain of cell wall from Mycobacterium chelonae. Proc Natl Acad Sci USA 92, 11254-11258.[CrossRef]
    [Google Scholar]
  22. Mdluli, K., Swanson, J., Fischer, E., Lee, R. E. & Barry, C. E.III ( 1998; ). Mechanisms involved in the intrinsic isoniazid resistance of Mycobacterium avium. Mol Microbiol 27, 1223-1233.[CrossRef]
    [Google Scholar]
  23. Minnikin, D. E. ( 1982; ). Lipids: complex lipids, their chemistry, biosynthesis and roles. In The Biology of the Mycobacteria , pp. 95-184. Edited by C. Ratledge & J. Stanford. London:Academic Press.
  24. Minnikin, D. E., Hutchinson, G., Caldicott, A. B. & Goodfellow, M. ( 1980; ). Thin-layer chromatography of methanolysates of mycolic acid-containing bacteria. J Chromatogr 188, 221-233.[CrossRef]
    [Google Scholar]
  25. Nikaido, H., Kim, S.-H. & Rosenberg, E. Y. ( 1993; ). Physical organization of lipids in the cell wall of Mycobacterium chelonae. Mol Microbiol 8, 1025-1030.[CrossRef]
    [Google Scholar]
  26. Plesiat, P. & Nikaido, H. ( 1992; ). Outer membranes of Gram-negative bacteria are permeable to steroid probes. Mol Microbiol 6, 1323-1333.[CrossRef]
    [Google Scholar]
  27. Puech, V., Bayan, N., Salim, K., Leblan, G. & Daffé, M. ( 2000; ). Characterization of the in vivo acceptors of the mycoloyl residues transferred by the corynebacterial PSI and the related mycobacterial antigen 85. Mol Microbiol 35, 1026-1041.[CrossRef]
    [Google Scholar]
  28. Rastogi, N. ( 1991; ). Recent observations concerning structure and function relationships in the mycobacterial cell envelope: elaboration of a model in terms of mycobacterial pathogenicity, virulence and drug-resistance. Res Microbiol 142, 464-476.[CrossRef]
    [Google Scholar]
  29. Rastogi, N., Goh, K. S. & David, H. L. ( 1990; ). Enhancement of drug susceptibility of Mycobacterium avium by inhibitors of cell envelope synthesis. Antimicrob Agents Chemother 34, 759-764.[CrossRef]
    [Google Scholar]
  30. Rumijowska, A., Lisowska, K., Ziółkowski, A. & Sedlaczek, L. ( 1997; ). Transformation of sterols by Mycobacterium vaccae: effect of lecithin on the permeability of cell envelopes to sterols. World J Microbiol Biotechnol 13, 89-95.[CrossRef]
    [Google Scholar]
  31. Rumijowska-Galewicz, A., Ziółkowski, A., Korycka-Machała, M. & Sedlaczek, L. ( 2000; ). Alterations in lipid composition of Mycobacterium vaccae cell wall outer layer enhance β-sitosterol degradation. World J Biol Biotechnol 16, 237-244.
    [Google Scholar]
  32. Sedlaczek, L., Górmiński, B. & Lisowska, K. ( 1994; ). Effect of inhibitors of cell envelope synthesis on β-sitosterol side chain degradation by Mycobacterium sp. MB 3683. J Basic Microbiol 34, 387-399.[CrossRef]
    [Google Scholar]
  33. Sedlaczek, L., Lisowska, K., Korycka, M., Rumijowska, A., Ziółkowski, A. & Długoński, J. ( 1999; ). The effect of cell wall components on glycine-enhanced sterol side chain degradation to androstene derivatives by mycobacteria. Appl Microbiol Biotechnol 52, 563-571.[CrossRef]
    [Google Scholar]
  34. Szentirmai, A. ( 1990; ). Microbial physiology of side chain degradation of sterols. J Ind Microbiol 6, 101-115.[CrossRef]
    [Google Scholar]
  35. Vaara, M. ( 1992; ). Agents that increase the permeability of the outer membrane. Microbiol Rev 56, 395-411.
    [Google Scholar]
  36. Valero-Guillen, P. L. & Martin-Luengo, F. ( 1986; ). 1-Tetradecanol, a new alcohol found in the cell wall of some rapidly growing chromogenic mycobacteria. FEMS Microbiol Lett 35, 59-63.[CrossRef]
    [Google Scholar]
  37. Vestal, J. R. & Perry, J. J. ( 1971; ). Effect of substrate on the lipids of the hydrocarbon-utilizing Mycobacterium vaccae. Can J Microbiol 17, 445-449.[CrossRef]
    [Google Scholar]
  38. Yuan, Y., Zhu, Y., Crane, D. D. & Barry, C. E.III ( 1998; ). The effect of oxygenated mycolic acid composition on cell wall function and macrophage growth in Mycobacterium tuberculosis. Mol Microbiol 29, 1449-1458.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-10-2769
Loading
/content/journal/micro/10.1099/00221287-147-10-2769
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error