1887

Abstract

, a Gram-negative periodontopathic bacterium, produces a leukotoxin belonging to the RTX family. The production of leukotoxin varies greatly among different strains of this species and under different culture conditions. A toxin-production-variable strain, 301-b, stably produces significant amounts of leukotoxin in anaerobic fructose-limited chemostat cultures, but does not do so in the presence of excess fructose. This communication describes the cloning and sequencing of the leukotoxin promoter region from 301-b, showing that this strain has a promoter region similar to that from strain 652, a moderately toxic strain. Northern blot analysis using a leukotoxin gene probe demonstrated that change in toxin production in response to the level of external fructose was due to alteration in the transcriptional level of the leukotoxin gene. Pulsing of fructose into the fructose-limited chemostat culture remarkably reduced the intracellular cAMP level from 40 pmol (mg dry wt cells) to 31 pmol (mg dry wt cells), which was restored when the culture was returned to fructose-limited conditions. Further, it was found that addition of external cAMP to the culture with excess fructose resulted in an apparent recovery of leukotoxin production. Taken together, these findings indicate that a cAMP-dependent mechanism, possibly a catabolite-repression-like system, may be involved in the regulation of leukotoxin production in this bacterium.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-10-2749
2001-10-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/10/1472749a.html?itemId=/content/journal/micro/10.1099/00221287-147-10-2749&mimeType=html&fmt=ahah

References

  1. Abo, H., Matsumura, T., Kodama, T., Ohta, H., Fukui, K., Kato, K. & Kagawa, H. ( 1991; ). Peptide sequences for sucrose splitting and glucan binding within Streptococcus sobrinus glucosyltransferase (water-soluble-glucan synthetase). J Bacteriol 173, 989-996.
    [Google Scholar]
  2. Alderette, J. F. & Robertson, D. C. ( 1977; ). Repression of heat-stable enterotoxin synthesis in enterotoxigenic Escherichia coli. Infect Immun 17, 629-633.
    [Google Scholar]
  3. Baehni, P., Tsai, C.-C., McArthur, W. P., Hammond, B. F., Shenker, B. J. & Taichman, N. S. ( 1981; ). Leukotoxic activity in different strains of the bacterium Actinobacillus actinomycetemcomitans isolated from juvenile periodontitis in man. Arch Oral Biol 26, 671-676.[CrossRef]
    [Google Scholar]
  4. Bang, Y. B., Lee, S. E., Rhee, J. H. & Choi, S. H. ( 1999; ). Evidence that expression of the Vibrio vulnificus hemolysin gene is dependent on cyclic AMP and cyclic AMP receptor protein. J Bacteriol 181, 7639-7642.
    [Google Scholar]
  5. Brogan, J. M., Lally, E. T., Poulsen, K., Kilian, M. & Demuth, D. R. ( 1994; ). Regulation of Actinobacillus actinomycetemcomitans leukotoxin expression: analysis of the promoter regions of leukotoxic and minimally leukotoxic strains. Infect Immun 62, 501-508.
    [Google Scholar]
  6. Busque, P., Letellier, A., Harel, J. & Dubreuil, J. D. ( 1995; ). Production of Escherichia coli Stb enterotoxin is subject to catabolite repression. Microbiology 141, 1621-1627.[CrossRef]
    [Google Scholar]
  7. Coote, J. C. ( 1992; ). Structural and functional relationships among the RTX toxin determinants of Gram-negative bacteria. FEMS Microbiol Rev 88, 137-162.[CrossRef]
    [Google Scholar]
  8. Emory, S. A. & Belasco, J. G. ( 1990; ). The ompA 5′ untranslated RNA segment functions in Escherichia coli as a growth-rate-regulated mRNA stabilizer whose activity is unrelated to translational efficiency. J Bacteriol 172, 4472-4481.
    [Google Scholar]
  9. Evans, D. G., Evans, D. I., Karjalainen, T. K. & Lee, C.-H. ( 1991; ). Production of colonization factor antigen II of enterotoxigenic Escherichia coli is subject to catabolite repression. Curr Microbiol 23, 71-74.[CrossRef]
    [Google Scholar]
  10. Goransson, M., Forsman, K., Nilsson, P. & Uhlin, B. E. ( 1989; ). Upstream activating sequences that are shared by two differently transcribed operons mediated by cAMP-CRP regulation of pilus-adhesin in Escherichia coli. Mol Microbiol 3, 1557-1565.[CrossRef]
    [Google Scholar]
  11. Hara, K. & Loe, H. ( 1969; ). Carbohydrate components of the gingival exudate. J Periodontal Res 4, 202-207.[CrossRef]
    [Google Scholar]
  12. Inoue, M., Inoue, T., Miyagi, A., Tanimoto, I., Shingaki, R., Ohta, H. & Fukui, K. ( 2000; ). Nucleotide sequencing and transcriptional analysis of two tandem genes encoding glucosyltransferase (water-soluble-glucan synthetase) in Streptococcus cricetus HS-6. Microbiol Immunol 44, 755-764.[CrossRef]
    [Google Scholar]
  13. Kolodrubetz, D., Spitznagel, J.Jr, Wang, B., Phillips, L. H., Jacob, C. & Kraig, E. ( 1996; ). cis Elements and trans factors are both important in strain-specific regulation of the leukotoxin gene in Actinobacillus actinomycetemcomitans. Infect Immun 64, 3451-3460.
    [Google Scholar]
  14. Kraig, E., Dailey, T. & Kolodrubetz, D. ( 1990; ). Nucleotide sequence of the leukotoxin gene from Actinobacillus actinomycetemcomitans: homology to the alpha-hemolysin/leukotoxin gene family. Infect Immun 58, 920-929.
    [Google Scholar]
  15. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.[CrossRef]
    [Google Scholar]
  16. Lally, E. T. & Kieba, I. R. ( 1994; ). Molecular biology of Actinobacillus actinomycetemcomitans leukotoxin. In Molecular Pathogenesis of Periodontal Disease , pp. 69-82. Edited by R. Genco, S. Hamada, T. Lehner, J. McGhee & S. Mergenhagen. Washington, DC:American Society for Microbiology.
  17. Lally, E. T., Golub, E. E., Kieba, I. R., Taichman, N. S., Rosenbloom, J., Rosenbloom, J. C., Gibson, C. W. & Demuth, D. R. ( 1989; ). Analysis of the Actinobacillus actinomycetemcomitans leukotoxin gene. J Biol Chem 264, 15451-15456.
    [Google Scholar]
  18. Lally, E. T., Hill, R. B., Kieba, I. R. & Korostoff, J. ( 1999; ). The interaction between RTX toxins and target cells. Trends Microbiol 7, 356-361.[CrossRef]
    [Google Scholar]
  19. Matin, A. & Matin, M. K. ( 1982; ). Cellular levels, excretion, and synthesis rates of cyclic AMP in Escherichia coli grown in continuous culture. J Bacteriol 149, 801-807.
    [Google Scholar]
  20. Mizoguchi, K., Ohta, H., Miyagi, A., Kurihara, H., Takashiba, S., Kato, K., Murayama, Y. & Fukui, K. ( 1997; ). The regulatory effect of fermentable sugar levels on the production of leukotoxin by Actinobacillus actinomycetemcomitans. FEMS Microbiol Lett 146, 161-166.[CrossRef]
    [Google Scholar]
  21. Ohta, H., Kokeguchi, S., Fukui, K. & Kato, K. ( 1987; ). Leukotoxic activity in Actinobacillus (Haemophilus) actinomycetemcomitans isolated from periodontal disease patients. Microbiol Immunol 31, 313-325.[CrossRef]
    [Google Scholar]
  22. Ohta, H., Fukui, K. & Kato, K. ( 1989; ). Effect of bicarbonate on the growth of Actinobacillus actinomycetemcomitans in anaerobic fructose-limited chemostat cultures. J Gen Microbiol 135, 3485-3495.
    [Google Scholar]
  23. Ohta, H., Kato, K., Kokeguchi, S., Hara, H., Fukui, K. & Murayama, Y. ( 1991; ). Nuclease-sensitive binding of an Actinobacillus actinomycetemcomitans leukotoxin to the bacterial cell surface. Infect Immun 59, 4599-4605.
    [Google Scholar]
  24. Ohta, H., Hara, H., Fukui, K., Kurihara, H., Murayama, Y. & Kato, K. ( 1993; ). Association of Actinobacillus actinomycetemcomitans leukotoxin with nucleic acids on the bacterial cell surface. Infect Immun 61, 4878-4884.
    [Google Scholar]
  25. Ohta, H., Miyagi, A., Kato, K. & Fukui, K. ( 1996; ). The relationships between leukotoxin production, growth rate and the bicarbonate concentration in a toxin-production-variable strain of Actinobacillus actinomycetemcomitans. Microbiology 142, 963-970.[CrossRef]
    [Google Scholar]
  26. Poulsen, K., Theilade, E., Lally, E. T., Demuth, D. R. & Kilian, M. ( 1994; ). Population structure of Actinobacillus actinomycetemcomitans: a framework for studies of disease-associated properties. Microbiology 140, 2049-2060.[CrossRef]
    [Google Scholar]
  27. Saito, H. & Miura, K. ( 1963; ). Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 72, 619-629.[CrossRef]
    [Google Scholar]
  28. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  29. Slots, J. & Schonfeld, S. E. ( 1991; ). Actinobacillus actinomycetemcomitans in localized juvenile periodontitis. In Periodontal Disease: Pathogens and Host Immune Responses , pp. 53-64. Edited by S. Hamada, S. C. Holt & J. R. McGhee. Tokyo:Quintessence Publishing.
  30. Spitznagel, J.Jr, Kraig, E. & Kolodrubetz, D. ( 1991; ). Regulation of leukotoxin in leukotoxic and nonleukotoxic strains of Actinobacillus actinomycetemcomitans. Infect Immun 59, 1394-1401.
    [Google Scholar]
  31. Stormo, G. D. & Hartzell, G. W.III ( 1989; ). Identifying protein-binding sites from unaligned DNA fragments. Proc Natl Acad Sci USA 86, 1183-1187.[CrossRef]
    [Google Scholar]
  32. Strathdee, C. A. & Lo, R. Y. C. ( 1989; ). Cloning, nucleotide sequence, and characterization of genes encoding the secretion function of the Pasteurella haemolytica leukotoxin determinant. J Bacteriol 171, 916-928.
    [Google Scholar]
  33. Towbin, H., Staehelin, T. & Gordon, J. ( 1979; ). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76, 4350-4354.[CrossRef]
    [Google Scholar]
  34. Tsai, C.-C., McArthur, W. P., Baehni, P. C., Hammond, B. F. & Taichman, N. S. ( 1979; ). Extraction and partial characterization of a leukotoxin from a plaque-derived gram-negative microorganism. Infect Immun 25, 427-439.
    [Google Scholar]
  35. Tsai, C.-C., Shenker, B. J., DiRienzo, J. M., Malamud, D. & Taichman, N. S. ( 1984; ). Extraction and isolation of a leukotoxin from Actinobacillus actinomycetemcomitans with polymyxin B. Infect Immun 43, 700-705.
    [Google Scholar]
  36. Villarejo, M., Stanovich, J., Yong, K. & Edlin, G. ( 1978; ). Differences in membrane proteins, cyclic AMP levels, and glucose transport between batch and chemostat cultures of Escherichia coli. Curr Microbiol 1, 345-348.[CrossRef]
    [Google Scholar]
  37. Wayne, P. K. & Rosen, O. M. ( 1974; ). Cyclic 3′:5′-adenosine monophosphate in Escherichia coli during transient and catabolite repression. Proc Natl Acad Sci USA 71, 1436-1440.[CrossRef]
    [Google Scholar]
  38. Wright, L. F., Milne, D. P. & Knowles, C. J. ( 1979; ). The regulatory effects of growth rate and cyclic AMP levels on carbon catabolism and respiration in Escherichia coli K-12. Biochim Biophys Acta 583, 73-80.[CrossRef]
    [Google Scholar]
  39. Zambon, J. ( 1985; ). Actinobacillus actinomycetemcomitans in human periodontal disease. J Clin Periodontol 12, 1-20.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-10-2749
Loading
/content/journal/micro/10.1099/00221287-147-10-2749
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error