1887

Abstract

Listeriolysin O (LLO) is a major virulence factor secreted by the pathogenic and acts as pore-forming cytolysin. Based on sequence similarities between LLO and perfringolysin (PFO), the cytolysin from of known crystallographic structure, two truncated LLO proteins were produced: LLO-d123, comprising the first three predicted domains, and LLO-d4, the last C-terminal domain. The two proteins were efficiently secreted into the culture supernatant of and were able to bind to cell membranes. Strikingly, when expressed simultaneously, the two secreted domains LLO-d123 and LLO-d4 reassembled into a haemolytically active form. Two in-frame linker insertions were generated in the hinge region between the d123 and d4 domains. In both cases, the insertion created a major cleavage site for proteolytic degradation and abolished cytolytic activity, which might suggest that the region connecting d123 and d4 participates in the interaction between the two portions of the monomer.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-10-2679
2001-10-01
2020-09-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/10/1472679a.html?itemId=/content/journal/micro/10.1099/00221287-147-10-2679&mimeType=html&fmt=ahah

References

  1. Alouf J. E.. 2000; Cholesterol-binding cytolytic protein toxins. Int J Med Microbiol290:351–356[CrossRef]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402[CrossRef]
    [Google Scholar]
  3. Autret N., Dubail I., Trieu-Cuot P., Berche P., Charbit A.. 2001; Identification of new genes involved in the virulence of Listeria monocytogenes by signature-tagged transposon mutagenesis. Infect Immun69:2054–2065[CrossRef]
    [Google Scholar]
  4. Bayley H.. 1997; Toxin structure: part of a hole?. Curr Biol7:R763–R767[CrossRef]
    [Google Scholar]
  5. Berche P., Gaillard J. L., Sansonetti P. J.. 1987; Intracellular growth of Listeria monocytogenes as a prerequisite for in vivo induction of T cell-mediated immunity. J Immunol138:2266–2271
    [Google Scholar]
  6. Betton J. M., Hofnung M.. 1994; In vivo assembly of active maltose binding protein from independently exported protein fragments. EMBO J13:1226–1234
    [Google Scholar]
  7. Bibi E., Kaback H. R.. 1990; In vivo expression of the lacY gene in two segments leads to functional lac permease. Proc Natl Acad Sci USA87:4325–4329[CrossRef]
    [Google Scholar]
  8. Chakraborty T., Leimeister-Wachter M., Domann E., Hartl M., Goebel W., Nichterlein T., Notermans S.. 1992; Coordinate regulation of virulence genes in Listeria monocytogenes requires the product of the prfA gene. J Bacteriol174:568–574
    [Google Scholar]
  9. Charbit A., Andersen C., Wang J., Schiffler B., Michel V., Benz R., Hofnung M.. 2000; In vivo and in vitro studies of transmembrane beta-strand deletion, insertion or substitution mutants of the Escherichia coli K-12 maltoporin. Mol Microbiol35:777–790[CrossRef]
    [Google Scholar]
  10. Decatur A. L., Portnoy D. A.. 2000; A PEST-like sequence in listeriolysin O essential for Listeria monocytogenes pathogenicity. Science290:992–995[CrossRef]
    [Google Scholar]
  11. Diep D. B., Lawrence T. S., Ausio J., Howard S. P., Buckley J. T.. 1998; Secretion and properties of the large and small lobes of the channel-forming toxin aerolysin. Mol Microbiol30:341–352[CrossRef]
    [Google Scholar]
  12. Dramsi S., Biswas I., Maguin E., Braun L., Mastroeni P., Cossart P.. 1995; Entry of Listeria monocytogenes into hepatocytes requires expression of InIB, a surface protein of the internalin multigene family. Mol Microbiol16:251–261[CrossRef]
    [Google Scholar]
  13. Drevets D. A., Sawyer R. T., Potter T. A., Campbell P. A.. 1995; Listeria monocytogenes infects human endothelial cells by two distinct mechanisms. Infect Immun63:4268–4276
    [Google Scholar]
  14. Dubail I., Berche P.,The European Listeria Genome Consortium Charbit A.. 2000; Listeriolysin O as a reporter to identify constitutive and in vivo-inducible promoters in the pathogen Listeria monocytogenes . Infect Immun68:3242–3250[CrossRef]
    [Google Scholar]
  15. Erdenlig S., Ainsworth A. J., Austin F. W.. 1999; Production of monoclonal antibodies to Listeria monocytogenes and their application to determine the virulence of isolates from channel catfish. Appl Environ Microbiol65:2827–2832
    [Google Scholar]
  16. Gaillard J. L., Berche P., Sansonetti P.. 1986; Transposon mutagenesis as a tool to study the role of hemolysin in the virulence of Listeria monocytogenes . Infect Immun52:50–55
    [Google Scholar]
  17. Gaillard J. L., Berche P., Mounier J., Richard S., Sansonetti P.. 1987; In vitro model of penetration and intracellular growth of Listeria monocytogenes in the human enterocyte-like cell line Caco-2. Infect Immun55:2822–2829
    [Google Scholar]
  18. Gaillard J. L., Jaubert F., Berche P.. 1996; The inlAB locus mediates the entry of Listeria monocytogenes into hepatocytes in vivo . J Exp Med183:359–369[CrossRef]
    [Google Scholar]
  19. Geoffroy C., Gaillard J. L., Alouf J. E., Berche P.. 1989; Production of thiol-dependent haemolysins by Listeria monocytogenes and related species. J Gen Microbiol135:481–487
    [Google Scholar]
  20. Ghani E., Weis S., Walev I., Kehoe M., Bhakdi S., Palmer M.. 1999; Streptolysin O: inhibition of the conformational change during membrane binding of the monomer prevents oligomerization and pore formation. Biochemistry38:15204–15211[CrossRef]
    [Google Scholar]
  21. Guex N., Diemand A., Peitsch M. C.. 1999; Protein modelling for all. Trends Biochem Sci24:364–367[CrossRef]
    [Google Scholar]
  22. Guzman C. A., Rohde M., Chakraborty T., Domann E., Hudel M., Wehland J., Timmis K. N.. 1995; Interaction of Listeria monocytogenes with mouse dendritic cells. Infect Immun63:3665–3673
    [Google Scholar]
  23. Heuck A. P., Hotze E. M., Tweten R. K., Johnson A. E.. 2000; Mechanism of membrane insertion of a multimeric β-barrel protein: perfringolysin O creates a pore using ordered and coupled conformational changes. Mol Cell6:1233–1242[CrossRef]
    [Google Scholar]
  24. Jacobs T., Darji A., Frahm N., Rohde M., Wehland J., Chakraborty T., Weiss S.. 1998; Listeriolysin O: cholesterol inhibits cytolysis but not binding to cellular membranes. Mol Microbiol28:1081–1089[CrossRef]
    [Google Scholar]
  25. Jacobs T., Cima-Cabal M. D., Darji A.. 7 other authors 1999; The conserved undecapeptide shared by thiol-activated cytolysins is involved in membrane binding. FEBS Lett459:463–466[CrossRef]
    [Google Scholar]
  26. Jones S., Preiter K., Portnoy D. A.. 1996; Conversion of an extracellular cytolysin into a phagosome-specific lysin which supports the growth of an intracellular pathogen. Mol Microbiol21:1219–1225[CrossRef]
    [Google Scholar]
  27. Kathariou S., Metz P., Hof H., Goebel W.. 1987; Tn 916 -induced mutations in the hemolysin determinant affecting virulence of Listeria monocytogenes . J Bacteriol169:1291–1297
    [Google Scholar]
  28. Kuhn M., Goebel W.. 1989; Identification of an extracellular protein of Listeria monocytogenes possibly involved in intracellular uptake by mammalian cells. Infect Immun57:55–61
    [Google Scholar]
  29. Leimeister-Wachter M., Haffner C., Domann E., Goebel W., Chakraborty T.. 1990; Identification of a gene that positively regulates expression of listeriolysin, the major virulence factor of Listeria monocytogenes . Proc Natl Acad Sci USA87:8336–8340[CrossRef]
    [Google Scholar]
  30. Lety M. A., Frehel C., Dubail I., Beretti J. L., Kayal S., Berche P., Charbit A.. 2001; Identification of a PEST-like motif in listeriolysin O required for phagosomal escape and for virulence of Listeria monocytogenes . Mol Microbiol39:1124–1140[CrossRef]
    [Google Scholar]
  31. Mackaness G. B.. 1962; Cellular resistance to infection. J Exp Med116:381–406[CrossRef]
    [Google Scholar]
  32. Mengaud J., Vicente M. F., Chenevert J., Pereira J. M., Geoffroy C., Gicquel-Sanzey B., Baquero F., Perez-Diaz J. C., Cossart P.. 1988; Expression in Escherichia coli and sequence analysis of the listeriolysin O determinant of Listeria monocytogenes . Infect Immun56:766–772
    [Google Scholar]
  33. Michel E., Reich K. A., Favier R., Berche P., Cossart P.. 1990; Attenuated mutants of the intracellular bacterium Listeria monocytogenes obtained by single amino acid substitutions in listeriolysin O. Mol Microbiol4:2167–2178[CrossRef]
    [Google Scholar]
  34. Nakamura M., Sekino-Suzuki N., Mitsui K. I., Ohno-Iwashita Y.. 1998; Contribution of tryptophan residues to the structural changes in perfringolysin O during interaction with liposomal membranes. J Biochem123:1145–1155[CrossRef]
    [Google Scholar]
  35. Palmer M., Harris R., Freytag C., Kehoe M., Tranum-Jensen J., Bhakdi S.. 1998; Assembly mechanism of the oligomeric streptolysin O pore: the early membrane lesion is lined by a free edge of the lipid membrane and is extended gradually during oligomerization. EMBO J17:1598–1605[CrossRef]
    [Google Scholar]
  36. Park S. F., Stewart G. S.. 1990; High efficiency transformation of Listeria monocytogenes by electroporation of penicillin-treated cells. Gene94:129–132[CrossRef]
    [Google Scholar]
  37. Portnoy D. A., Jacks P. S., Hinrichs D. J.. 1988; Role of hemolysin for the intracellular growth of Listeria monocytogenes . J Exp Med167:1459–1471[CrossRef]
    [Google Scholar]
  38. Renzoni A., Cossart P., Dramsi S.. 1999; PrfA, the transcriptional activator of virulence genes, is upregulated during interaction of Listeria monocytogenes with mammalian cells and in eukaryotic cell extracts. Mol Microbiol34:552–561[CrossRef]
    [Google Scholar]
  39. Rossjohn J., Fell S. C., McKinstry W. J., Tweten R. K., Parker M. W.. 1997; Structure of a cholesterol-binding, thiol-activated cytolysin and a model of its membrane form. Cell89:685–692[CrossRef]
    [Google Scholar]
  40. Shatursky O., Heuck A. P., Shepard L. A., Rossjohn J., Parker M. W., Johnson A. E., Tweten R. K.. 1999; The mechanism of membrane insertion for a cholesterol-dependent cytolysin: a novel paradigm for pore-forming toxins. Cell99:293–299[CrossRef]
    [Google Scholar]
  41. Sheehan B., Kocks C., Dramsi S., Gouin E., Klarsfeld A. D., Mengaud J., Cossart P.. 1994; Molecular and genetic determinants of the Listeria monocytogenes infectious process. Curr Top Microbiol Immunol192:187–216
    [Google Scholar]
  42. Shepard L. A., Heuck A. P., Hamman B. D., Rossjohn J., Parker M. W., Ryan K. R., Johnson A. E., Tweten R. K.. 1998; Identification of a membrane-spanning domain of the thiol-activated pore-forming toxin Clostridium perfringens perfringolysin O: an alpha-helical to beta-sheet transition identified by fluorescence spectroscopy. Biochemistry37:14563–14574[CrossRef]
    [Google Scholar]
  43. Shepard L. A., Shatursky O., Johnson A. E., Tweten R. K.. 2000; The mechanism of pore assembly for a cholesterol-dependent cytolysin: formation of a large prepore complex precedes the insertion of the transmembrane beta-hairpins. Biochemistry39:10284–10293[CrossRef]
    [Google Scholar]
  44. Shiba K., Schimmel P.. 1992; Functional assembly of a randomly cleaved protein. Proc Natl Acad Sci USA89:1880–1884[CrossRef]
    [Google Scholar]
  45. Trieu-Cuot P., Carlier C., Poyart-Salmeron C., Courvalin P.. 1990; A pair of mobilizable shuttle vectors conferring resistance to spectinomycin for molecular cloning in Escherichia coli and in Gram-positive bacteria. Nucleic Acids Res18:4296[CrossRef]
    [Google Scholar]
  46. Trieu-Cuot P., Carlier C., Poyart-Salmeron C., Courvalin P.. 1991; An integrative vector exploiting the transposition properties of Tn 1545 for insertional mutagenesis and cloning of genes from gram-positive bacteria. Gene106:21–27[CrossRef]
    [Google Scholar]
  47. Tweten R. K., Harris R. W., Sims P. J.. 1991; Isolation of a tryptic fragment from Clostridium perfringens theta-toxin that contains sites for membrane binding and self-aggregation. J Biol Chem266:12449–12454
    [Google Scholar]
  48. Villanueva M. S., Sijts A. J., Pamer E. G.. 1995; Listeriolysin is processed efficiently into an MHC class I-associated epitope in Listeria monocytogenes -infected cells. J Immunol155:5227–5233
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-10-2679
Loading
/content/journal/micro/10.1099/00221287-147-10-2679
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error