1887

Abstract

The type III secretion system of transports four known effector proteins: ExoS, ExoT, ExoU and ExoY. However, the prevalence of the type III secretion system genes or the effector-encoding genes in clinical and environmental isolates of has not been well studied. Southern hybridization analyses and PCR were performed on over 100 isolates to determine the distribution of these genes. Clinical isolates were obtained from urine, endotracheal, blood and wound specimens, from the sputum of cystic fibrosis (CF) patients, and from non-hospital environmental sites. The gene was used as a marker for the presence of the large chromosomal locus encoding the type III secretion machinery proteins. Each isolate contained the gene, indicating that at least a portion of this large chromosomal locus was present in all isolates. Likewise, each isolate contained like sequences. In contrast, the , and genes were variable traits. Overall, 72% of examined isolates contained the gene, 28% contained the gene, and 89% contained the gene. Interestingly, an inverse correlation was noted between the presence of the and genes in that all isolates except two contained either or but not both. No significant difference in , or prevalence was observed between clinical and environmental isolates or between isolates cultured from different disease sites except for CF respiratory isolates. CF isolates harboured the gene less frequently and the gene more frequently than did isolates from some of the other sites of infection, including the respiratory tract of patients without CF. These results suggest that the type III secretion system is present in nearly all clinical and environmental isolates but that individual isolates and populations of isolates from distinct disease sites differ in their effector genotypes. The ubiquity of type III secretion genes in clinical isolates is consistent with an important role for this system in human disease.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-10-2659
2001-10-01
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/10/1472659a.html?itemId=/content/journal/micro/10.1099/00221287-147-10-2659&mimeType=html&fmt=ahah

References

  1. Allewelt, M., Coleman, F. T., Grout, M., Priebe, G. P. & Pier, G. B. ( 2000; ). Acquisition of expression of the Pseudomonas aeruginosa ExoU cytotoxin leads to increased bacterial virulence in a murine model of acute pneumonia and systemic spread. Infect Immun 68, 3998-4004.[CrossRef]
    [Google Scholar]
  2. Alonso, A., Rojo, F. & Martinez, J. L. ( 1999; ). Environmental and clinical isolates of Pseudomonas aeruginosa show pathogenic and biodegradative properties irrespective of their origin. Environ Microbiol 1, 421-430.[CrossRef]
    [Google Scholar]
  3. Bonten, M. J. M., Bergmans, C. J. J., Speijer, H. & Stobberingh, E. E. ( 1999; ). Characteristics of polyclonal endemicity of Pseudomonas aeruginosa colonization in intensive care units. Am J Respir Crit Care Med 160, 1212-1219.[CrossRef]
    [Google Scholar]
  4. Campbell, M., Mahenthiralingam, E. & Speert, D. P. ( 2000; ). Evaluation of random amplified polymorphic DNA typing of Pseudomonas aeruginosa. J Clin Microbiol 38, 4614-4615.
    [Google Scholar]
  5. Chen, W.-P. & Kuo, T.-T. ( 1993; ). A simple and rapid method for the preparation of gram-negative bacterial genomic DNA. Nucleic Acids Res 21, 2260.[CrossRef]
    [Google Scholar]
  6. Coburn, J. & Frank, D. ( 1999; ). Macrophages and epithelial cells respond differently to the Pseudomonas aeruginosa type III secretion system. Infect Immun 67, 3151-3154.
    [Google Scholar]
  7. Cowell, B. A., Chen, D. Y., Frank, D. W., Vallis, A. J. & Fleiszig, S. M. J. ( 2000; ). ExoT of cytotoxic Pseudomonas aeruginosa prevents uptake by corneal epithelial cells. Infect Immun 68, 403-406.[CrossRef]
    [Google Scholar]
  8. Dacheux, D., Toussaint, B., Richard, M., Brochier, G., Croize, J. & Attree, I. ( 2000; ). Pseudomonas aeruginosa cystic fibrosis isolates induce rapid, type III secretion-dependent, but ExoU-independent, oncosis of macrophages and polymorphonuclear neutrophils. Infect Immun 68, 2916-2924.[CrossRef]
    [Google Scholar]
  9. Fagon, J. Y., Chastre, J., Domart, Y., Trouillet, J. L., Pierre, J., Carne, C. & Gibert, C. ( 1989; ). Nosocomial pneumonia in patients receiving continuous mechanical ventilation. Am Rev Respir Dis 139, 877-884.[CrossRef]
    [Google Scholar]
  10. Fagon, J.-Y., Chastre, J., Hance, A. J., Montravers, P., Novara, A. & Gibert, C. ( 1993; ). Nosocomial pneumonia in ventilated patients: a cohort study evaluating attributable mortality and hospital stay. Am J Med 94, 281-288.[CrossRef]
    [Google Scholar]
  11. Finck-Barbancon, V., Goranson, J., Zhu, L., Sawa, T., Wiener-Kronish, J. P., Fleiszig, S. M. J., Wu, C., Mende-Mueller, L. & Frank, D. ( 1997; ). ExoU expression by Pseudomonas aeruginosa correlates with acute cytotoxicity and epithelial injury. Mol Microbiol 25, 547-557.[CrossRef]
    [Google Scholar]
  12. Fitzsimmons, S. C. ( 1993; ). The changing epidemiology of cystic fibrosis. J Pediatr 122, 1-9.
    [Google Scholar]
  13. Fleiszig, S. M. J., Zaidi, T. S., Preston, M. J., Grout, M., Evans, D. J. & Pier, G. B. ( 1996; ). Relationship between cytotoxicity and corneal epithelial cell invasion by clinical isolates of Pseudomonas aeruginosa. Infect Immun 64, 2288-2294.
    [Google Scholar]
  14. Fleiszig, S. M. J., Wiener-Kronish, J. P., Miyazaki, H., Vallas, V., Mostov, K., Kanada, D., Sawa, T., Yen, T. S. B. & Frank, D. ( 1997; ). Pseudomonas aeruginosa-mediated cytotoxicity and invasion correlate with distinct genotypes at the loci encoding exoenzyme S. Infect Immun 65, 579-586.
    [Google Scholar]
  15. Fluit, A. C., Verhoef, J. & Schmitz, F. J. ( 2000; ). Antimicrobial resistance in European isolates of Pseudomonas aeruginosa. European SENTRY participants. Eur J Clin Microbiol Infect Dis 19, 370-374.[CrossRef]
    [Google Scholar]
  16. Frank, D. ( 1997; ). The exoenzyme S regulon of Pseudomonas aeruginosa. Mol Microbiol 26, 621-629.[CrossRef]
    [Google Scholar]
  17. Frithz-Lindsten, E., Du, Y., Rosqvist, R. & Forsberg, A. ( 1997; ). Intracellular targeting of exoenzyme S of Pseudomonas aeruginosa via type III-dependent translocation induces phagocytosis resistance, cytotoxicity and disruption of actin microfilaments. Mol Microbiol 25, 1125-1139.[CrossRef]
    [Google Scholar]
  18. Frithz-Lindsten, E., Holmstrom, A., Jacobsson, L., Soltani, M., Olsson, J., Rosqvist, R. & Forsberg, A. ( 1998; ). Functional conservation of the effector protein translocators PopB/YopB and PopD/YopD of Pseudomonas aeruginosa and Yersinia pseudotuberculosis. Mol Microbiol 29, 1155-1165.[CrossRef]
    [Google Scholar]
  19. Garrity-Ryan, L., Kazmierczak, B., Kowal, R., Comolli, J., Hauser, A. & Engel, J. N. ( 2000; ). The arginine finger domain of ExoT contributes to actin cytoskeleton disruption and inhibition of internalization of Pseudomonas aeruginosa by epithelial cells and macrophages. Infect Immun 68, 7100-7113.[CrossRef]
    [Google Scholar]
  20. Gilardi, G. L. (1991). Pseudomonas and related genera. In Manual of Clinical Microbiology, pp. 429–441. Edited by A. Balows, W. J. Hausler, Jr, K. L. Herrmann, H. D. Isenberg & H. J. Shadomy. Washington, DC: American Society for Microbiology.
  21. Goehring, U.-M., Schmidt, G., Pederson, K. J., Aktories, K. & Barbieri, J. T. ( 1999; ). The N-terminal domain of Pseudomonas aeruginosa exoenzyme S is a GTPase-activating protein for Rho GTPases. J Biol Chem 274, 36369-36372.[CrossRef]
    [Google Scholar]
  22. Hanberger, H., Garcia-Rodriguez, J.-A., Gobernado, M., Goossens, H., Nilsson, L. E. & Struelens, M. J. ( 1999; ). Antibiotic susceptibility among aerobic gram-negative bacilli in intensive care units in 5 European countries. JAMA (J Am Med Assoc) 281, 67-71.[CrossRef]
    [Google Scholar]
  23. Hauser, A. R. & Engel, J. N. ( 1999; ). Pseudomonas aeruginosa induces type III secretion-mediated apoptosis of macrophages and epithelial cells. Infect Immun 67, 5530-5537.
    [Google Scholar]
  24. Hauser, A. R., Kang, P. J. & Engel, J. ( 1998; ). PepA, a novel secreted protein of Pseudomonas aeruginosa, is necessary for cytotoxicity and virulence. Mol Microbiol 27, 807-818.[CrossRef]
    [Google Scholar]
  25. Henriksson, M. L., Rosqvist, R., Telepnev, M., Wolf-Watz, H. & Hallberg, B. ( 2000; ). Ras effector pathway activation by epidermal growth factor is inhibited in vivo by exoenzyme S ADP-ribosylation of Ras. Biochem J 347, 217-222.[CrossRef]
    [Google Scholar]
  26. Hirakata, Y., Finlay, B. B., Simpson, D. A., Kohno, S., Kamihira, S. & Speert, D. P. ( 2000; ). Penetration of clinical isolates of Pseudomonas aeruginosa through MDCK epithelial cell monolayers. J Infect Dis 181, 765-769.[CrossRef]
    [Google Scholar]
  27. Holder, I. A. ( 1977; ). Epidemiology of Pseudomonas aeruginosa in a burns hospital. In Pseudomonas aeruginosa: Ecological Aspects and Patient Colonization , pp. 77-95. Edited by V. M. Young. New York:Raven Press.
  28. Kang, P. J., Hauser, A. R., Apodaca, G., Fleiszig, S., Wiener-Kronish, J., Mostov, K. & Engel, J. N. ( 1997; ). Identification of Pseudomonas aeruginosa genes required for epithelial cell injury. Mol Microbiol 24, 1249-1262.[CrossRef]
    [Google Scholar]
  29. Krall, R., Schmidt, G., Aktories, K. & Barbieri, J. T. ( 2000; ). Pseudomonas aeruginosa ExoT is a Rho GTPase-activating protein. Infect Immun 68, 6066-6068.[CrossRef]
    [Google Scholar]
  30. Kropec, A., Huebner, J., Riffel, M., Bayer, U., Benzing, A., Geiger, K. & Daschner, F. D. ( 1993; ). Exogenous or endogenous reservoirs of nosocomial Pseudomonas aeruginosa and Staphylococcus aureus infections in a surgical intensive care unit. Intensive Care Med 19, 161-165.[CrossRef]
    [Google Scholar]
  31. Kurahashi, K., Kajikawa, O., Sawa, T., Ohara, M., Gropper, M. A., Frank, D. W., Martin, T. R. & Wiener-Kronish, J. P. ( 1999; ). Pathogenesis of septic shock in Pseudomonas aeruginosa pneumonia. J Clin Invest 104, 743-750.[CrossRef]
    [Google Scholar]
  32. Liu, Y., Davin-Regli, A., Bosi, C., Charrel, R. N. & Bollet, C. ( 1996; ). Epidemiological investigation of Pseudomonas aeruginosa nosocomial bacteremia isolates by PCR-based DNA fingerprinting analysis. J Med Microbiol 45, 359-365.[CrossRef]
    [Google Scholar]
  33. Louws, F. J., Fulbright, D. W., Stephens, C. T. & de Bruijn, F. J. ( 1994; ). Specific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR. Appl Environ Microbiol 60, 2286-2295.
    [Google Scholar]
  34. Mahenthiralingam, E., Campbell, M. E., Foster, J., Lam, J. S. & Speert, D. P. ( 1996; ). Random amplified polymorphic DNA typing of Pseudomonas aeruginosa isolates recovered from patients with cystic fibrosis. J Clin Microbiol 34, 1129-1135.
    [Google Scholar]
  35. Maurelli, A. T., Fernandez, R. E., Bloch, C. A., Rode, C. K. & Fasano, A. ( 1998; ). ‘‘Black holes’’ and bacterial pathogenicity: a large genomic deletion that enhances the virulence of Shigella spp. and enteroinvasive Escherichia coli. Proc Natl Acad Sci USA 95, 3943-3948.[CrossRef]
    [Google Scholar]
  36. National Nosocomial Infections Surveillance System ( 1996; ). National Nosocomial Infections Surveillance report, data summary from October 1986–April 1996, issued May 1996. Am J Infect Control 24, 380–388.[CrossRef]
    [Google Scholar]
  37. Olson, J. C., McGuffie, E. M. & Frank, D. W. ( 1997; ). Effects of differential expression of the 49-kilodalton exoenzyme S by Pseudomonas aeruginosa on cultured eukaryotic cells. Infect Immun 65, 248-256.
    [Google Scholar]
  38. Olson, J. C., Fraylick, J. E., McGuffie, E. M., Dolan, K. M., Yahr, T. L., Frank, D. W. & Vincent, T. S. ( 1999; ). Interruption of multiple cellular processes in HT-29 epithelial cells by Pseudomonas aeruginosa exoenzyme S. Infect Immun 67, 2847-2854.
    [Google Scholar]
  39. Palleroni, N. J. ( 1984; ). Pseudomonadaceae. In Bergey’s Manual of Systematic Bacteriology , pp. 141-219. Edited by N. R. Kreig & J. G. Holt. Baltimore:Williams & Wilkins.
  40. Pedersen, S. S., Jensen, T., Pressler, T., Hoiby, N. & Rosendal, K. ( 1986; ). Does centralized treatment of cystic fibrosis increase the risk of Pseudomonas aeruginosa infection? Acta Paediatr Scand 75, 840-845.[CrossRef]
    [Google Scholar]
  41. Pederson, K. J., Vallis, A. J., Aktories, K., Frank, D. W. & Barbieri, J. T. ( 1999; ). The amino-terminal domain of Pseudomonas aeruginosa ExoS disrupts actin filaments via small-molecular-weight GTP-binding proteins. Mol Microbiol 32, 393-401.[CrossRef]
    [Google Scholar]
  42. Pennington, J. E. ( 1995; ). Nosocomial respiratory infections. In Principles and Practice of Infectious Diseases , pp. 2599-2607. Edited by G. L. Mandell, J. E. Bennett & R. Dolin. New York:Churchill Livingstone.
  43. Romling, U., Fiedler, B., Bosshammer, J., Grothues, D., Greipel, J., von der Hardt, H. & Tummler, B. ( 1994; ). Epidemiology of chronic Pseudomonas aeruginosa infection in cystic fibrosis. J Infect Dis 170, 1616-1621.[CrossRef]
    [Google Scholar]
  44. Ruimy, R., Genauzeau, E., Barnabe, C., Beaulieu, A., Tibayrenc, M., Andremont, A. & The P. aeruginosa Study Group ( 2001; ). Genetic diversity of Pseudomonas aeruginosa strains isolated from ventilated patients with nosocomial pneumonia, cancer patients with bacteremia, and environmental water. Infect Immun 69, 584–588.[CrossRef]
    [Google Scholar]
  45. Rumbaugh, K. P., Hamood, A. N. & Griswold, J. A. ( 1999; ). Analysis of Pseudomonas aeruginosa clinical isolates for possible variations within the virulence genes exotoxin A and exoenzyme S. J Surg Res 82, 95-105.[CrossRef]
    [Google Scholar]
  46. Salyers, A. A. & Whitt, D. D. (1994). Bacterial Pathogenesis: a Molecular Approach. Washington, DC: American Society for Microbiology.
  47. Stover, C. K., Pham, X. Q., Erwin, A. L. & 28 other authors ( 2000; ). Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406, 959–964.[CrossRef]
    [Google Scholar]
  48. Vallis, A. J., Finck-Barbancon, V., Yahr, T. L. & Frank, D. W. ( 1999; ). Biological effects of Pseudomonas aeruginosa type III-secreted proteins on CHO cells. Infect Immun 67, 2040-2044.
    [Google Scholar]
  49. Versalovic, J., Koeuth, T. & Lupske, J. R. ( 1991; ). Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 19, 6823-6831.[CrossRef]
    [Google Scholar]
  50. Vincent, T. S., Fraylick, J. E., McGuffie, E. M. & Olson, J. C. ( 1999; ). ADP-ribosylation of oncogenic Ras proteins by Pseudomonas aeruginosa exoenzyme S in vivo. Mol Microbiol 32, 1054-1064.[CrossRef]
    [Google Scholar]
  51. Vogel, H. J. & Bonner, D. M. ( 1956; ). Acetylornithinase of Escherichia coli partial purification and some properties. J Biol Chem 218, 97-106.
    [Google Scholar]
  52. Woods, D. E., Schaffer, M. S., Rabin, H. R., Campbell, G. D. & Sokol, P. A. ( 1986; ). Phenotypic comparison of Pseudomonas aeruginosa strains isolated from a variety of clinical sites. J Clin Microbiol 24, 260-264.
    [Google Scholar]
  53. Yahr, T. L., Barbieri, J. T. & Frank, D. W. ( 1996a; ). Genetic relationship between the 53- and 49-kilodalton forms of exoenzyme S from Pseudomonas aeruginosa. J Bacteriol 178, 1412-1419.
    [Google Scholar]
  54. Yahr, T. L., Goranson, J. & Frank, D. W. ( 1996b; ). Exoenzyme S of Pseudomonas aeruginosa is secreted by a type III secretion pathway. Mol Microbiol 22, 991-1003.[CrossRef]
    [Google Scholar]
  55. Yahr, T. L., Vallis, A. J., Hancock, M. K., Barbieri, J. T. & Frank, D. W. ( 1998; ). ExoY, an adenylate cyclase secreted by the Pseudomonas aeruginosa type III system. Proc Natl Acad Sci USA 95, 13899-13904.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-10-2659
Loading
/content/journal/micro/10.1099/00221287-147-10-2659
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error