1887

Abstract

The main function of the hydrogenosome, a typical organelle of trichomonads, is to convert malate or pyruvate to H, CO and acetate by a pathway associated with ATP synthesis. This pathway relies on activity of iron–sulfur proteins such as pyruvate:ferredoxin oxidoreductase (PFOR), hydrogenase and ferredoxin. To examine the effect of iron availability on proper hydrogenosomal function, the metabolic activity of the hydrogenosome and expression of hydrogenosomal enzymes were compared in maintained under iron-rich (150 μM iron nitrilotriacetate) or iron-restricted (180 μM 2,2-dipyridyl) conditions . The activities of PFOR and hydrogenase, and also production of acetate and H, were markedly decreased or absent in iron-restricted trichomonads. Moreover, a decrease in activity of the hydrogenosomal malic enzyme, which is a non-Fe–S protein, was also observed. Impaired function of hydrogenosomes under iron-restricted conditions was compensated for by activation of the cytosolic pathway, mediating conversion of pyruvate to ethanol via acetaldehyde. This metabolic switch was fully reversible. Production of hydrogen by iron-restricted trichomonads was restored to the level of organisms grown under iron-rich conditions within 3 h after addition of 150 μM iron nitrilotriacetate. Protein analysis of purified hydrogenosomes from iron-restricted cells showed decreased levels of proteins corresponding to PFOR, malic enzyme and ferredoxin. Accordingly, these cells displayed decreased steady-state level and synthesis of mRNAs encoding PFOR and hydrogenosomal malic enzyme. These data demonstrate that iron is essential for function of the hydrogenosome, show its involvement in the expression of hydrogenosomal proteins and indicate the presence of iron-dependent control of gene transcription in.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-1-53
2001-01-01
2020-01-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/1/1470053a.html?itemId=/content/journal/micro/10.1099/00221287-147-1-53&mimeType=html&fmt=ahah

References

  1. Alderete, J. F., Engbring, J., Lauriano, C. M. & O’Brien, J. L. ( 1998; ). Only two of the Trichomonas vaginalis triplet AP51 adhesins are regulated by iron. Microb Pathog 24, 1-16.[CrossRef]
    [Google Scholar]
  2. Biagini, G. A., Finlay, B. J. & Lloyd, D. ( 1997; ). Evolution of the hydrogenosome. FEMS Microbiol Lett 155, 133-140.[CrossRef]
    [Google Scholar]
  3. Bowtell, D. D. ( 1987; ). Rapid isolation of eukaryotic DNA. Anal Biochem 162, 463-465.[CrossRef]
    [Google Scholar]
  4. Bradley, P. J., Lahti, C. J., Plumper, E. & Johnson, P. J. ( 1997; ). Targeting and translocation of proteins into the hydrogenosome of the protist Trichomonas: similarities with mitochondrial protein import. EMBO J 16, 3484-3493.[CrossRef]
    [Google Scholar]
  5. Bui, E. T. & Johnson, P. J. ( 1996; ). Identification and characterization of [Fe]-hydrogenases in the hydrogenosome of Trichomonas vaginalis. Mol Biochem Parasitol 76, 305-310.[CrossRef]
    [Google Scholar]
  6. Bui, E. T., Bradley, P. J. & Johnson, P. J. ( 1996; ). A common evolutionary origin for mitochondria and hydrogenosomes. Proc Natl Acad Sci USA 93, 9651-9656.[CrossRef]
    [Google Scholar]
  7. Čerkasovová, A., Čerkasov, J. & Kulda, J. ( 1984; ). Metabolic differences between metronidazole resistant and susceptible strains of Tritrichomonas foetus. Mol Biochem Parasitol 11, 105-118.[CrossRef]
    [Google Scholar]
  8. Cha, S. & Parks, R. E.Jr ( 1964; ). Succinate thiokinase. Purification of the enzyme from pig heart. J Biol Chem 239, 1961-1967.
    [Google Scholar]
  9. Chapman, A., Linstead, D. J., Lloyd, D. & Williams, J. ( 1985; ). 13C-NMR reveals glycerol as an unexpected major metabolite of the protozoan parasite Trichomonas vaginalis. FEBS Lett 191, 287-292.[CrossRef]
    [Google Scholar]
  10. Chapman, A., Cammack, R., Linstead, D. J. & Lloyd, D. ( 1986; ). Respiration of Trichomonas vaginalis. Components detected by electron paramagnetic resonance spectroscopy. Eur J Biochem 156, 193-198.[CrossRef]
    [Google Scholar]
  11. Clemens, D. L. & Johnson, P. J. ( 2000; ). Failure to detect DNA in hydrogenosomes of Trichomonas vaginalis by nick translation and immunomicroscopy. Mol Biochem Parasitol 106, 307-313.[CrossRef]
    [Google Scholar]
  12. Crosa, J. H. ( 1997; ). Signal transduction and transcriptional and posttranscriptional control of iron-regulated genes in bacteria. Microbiol Mol Biol Rev 61, 319-336.
    [Google Scholar]
  13. Diamond, L. S. ( 1957; ). The establishment of various trichomonads of animals and man in axenic cultures. J Parasitol 43, 488-490.
    [Google Scholar]
  14. Dinbergs, I. D. & Lindmark, D. G. ( 1989; ). Tritrichomonas foetus: purification and characterization of hydrogenosomal ATP:AMP phosphotransferase (adenylate kinase). Exp Parasitol 69, 150-156.[CrossRef]
    [Google Scholar]
  15. Drmota, T., Proost, P., Van Ranst, M., Weyda, F., Kulda, J. & Tachezy, J. ( 1996; ). Iron-ascorbate cleavable malic enzyme from hydrogenosomes of Trichomonas vaginalis: purification and characterization. Mol Biochem Parasitol 83, 221-234.[CrossRef]
    [Google Scholar]
  16. Drmota, T., Tachezy, J. & Kulda, J. ( 1997; ). Isolation and characterization of cytosolic malate dehydrogenase from Trichomonas vaginalis. Folia Parasitol (Praha) 44, 103-108.
    [Google Scholar]
  17. Ellis, J. E., Williams, R., Cole, D., Cammack, R. & Lloyd, D. ( 1993; ). Electron transport components of the parasitic protozoon Giardia lamblia. FEBS Lett 325, 196-200.[CrossRef]
    [Google Scholar]
  18. Gorrell, T. E. ( 1985; ). Effect of culture medium iron content on the biochemical composition and metabolism of Trichomonas vaginalis. J Bacteriol 161, 1228-1230.
    [Google Scholar]
  19. Gorrell, T. E., Yarlett, N. & Müller, M. ( 1984; ). Isolation and characterization of Trichomonas vaginalis ferredoxin. Carlsberg Res Commun 49, 259-268.[CrossRef]
    [Google Scholar]
  20. Hackstein, J. H., Akhmanova, A., Boxma, B., Harhangi, H. R. & Voncken, F. G. ( 1999; ). Hydrogenosomes: eukaryotic adaptations to anaerobic environments. Trends Microbiol 7, 441-447.[CrossRef]
    [Google Scholar]
  21. Hantke, K. ( 1984; ). Cloning of the repressor protein gene of iron-regulated systems in Escherichia coli K-12. Mol Gen Genet 197, 337-341.[CrossRef]
    [Google Scholar]
  22. Horner, D. S., Hirt, R. P., Kilvington, S., Lloyd, D. & Embley, T. M. ( 1996; ). Molecular data suggest an early acquisition of the mitochondrion endosymbiont. Proc R Soc Lond Ser B Biol Sci 263, 1053-1059.[CrossRef]
    [Google Scholar]
  23. Hrdý, I. ( 1993; ). Purification and partial characterization of cytosolic malate dehydrogenase from Tritrichomonas foetus. Folia Parasitol (Praha) 40, 181-185.
    [Google Scholar]
  24. Hrdý, I. & Mertens, E. ( 1993; ). Purification and partial characterization of malate dehydrogenase (decarboxylating) from Tritrichomonas foetus hydrogenosomes. Parasitology 107, 379-385.[CrossRef]
    [Google Scholar]
  25. Jenkins, T. M., Gorrell, T. E., Müller, M. & Weitzman, P. D. ( 1991; ). Hydrogenosomal succinate thiokinase in Tritrichomonas foetus and Trichomonas vaginalis. Biochem Biophys Res Commun 179, 892-896.[CrossRef]
    [Google Scholar]
  26. Johnson, P. J., d’Oliveira, C. E., Gorrell, T. E. & Müller, M. ( 1990; ). Molecular analysis of the hydrogenosomal ferredoxin of the anaerobic protist Trichomonas vaginalis. Proc Natl Acad Sci USA 87, 6097-6101.[CrossRef]
    [Google Scholar]
  27. Johnson, P. J., Lahti, C. J. & Bradley, P. J. ( 1993; ). Biogenesis of the hydrogenosome in the anaerobic protist Trichomonas vaginalis. J Parasitol 79, 664-670.[CrossRef]
    [Google Scholar]
  28. Kabı́čková, H., Kulda, J., Čerkasovová, A. & Němcová, H. ( 1988; ). Metronidazole resistant Tritrichomonas foetus: activities of hydrogenosomal enzymes in course of development of anaerobic resistance. Acta Univ Carol Biol 30, 513-519.
    [Google Scholar]
  29. Kim, H. Y., Klausner, R. D. & Rouault, T. A. ( 1995; ). Translational repressor activity is equivalent and is quantitatively predicted by in vitro RNA binding for two iron-responsive element-binding proteins, IRP1 and IRP2. J Biol Chem 270, 4983-4986.[CrossRef]
    [Google Scholar]
  30. Kulda, J. ( 1999; ). Trichomonads, hydrogenosomes and drug resistance. Int J Parasitol 29, 199-212.[CrossRef]
    [Google Scholar]
  31. Kulda, J., Tachezy, J. & Čerkasovová, A. ( 1993; ). In vitro induced anaerobic resistance to metronidazole in Trichomonas vaginalis. J Eukaryot Microbiol 40, 262-269.[CrossRef]
    [Google Scholar]
  32. Lahti, C. J. & Johnson, P. J. ( 1991; ). Trichomonas vaginalis hydrogenosomal proteins are synthesized on free polyribosomes and may undergo processing upon maturation. Mol Biochem Parasitol 46, 307-310.[CrossRef]
    [Google Scholar]
  33. Lahti, C. J., d’Oliveira, C. E. & Johnson, P. J. ( 1992; ). Beta-succinyl-coenzyme A synthetase from Trichomonas vaginalis is a soluble hydrogenosomal protein with an amino-terminal sequence that resembles mitochondrial presequences. J Bacteriol 174, 6822-6830.
    [Google Scholar]
  34. Lahti, C. J., Bradley, P. J. & Johnson, P. J. ( 1994; ). Molecular characterization of the alpha-subunit of Trichomonas vaginalis hydrogenosomal succinyl CoA synthetase. Mol Biochem Parasitol 66, 309-318.[CrossRef]
    [Google Scholar]
  35. Lindmark, D. G. & Müller, M. ( 1973; ). Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellate Tritrichomonas foetus, and its role in pyruvate metabolism. J Biol Chem 248, 7724-7728.
    [Google Scholar]
  36. Marczak, R., Gorrell, T. E. & Müller, M. ( 1983; ). Hydrogenosomal ferredoxin of the anaerobic protozoon, Tritrichomonas foetus. J Biol Chem 258, 12427-12433.
    [Google Scholar]
  37. Markmann-Mulisch, U., Reiss, B. & Mulisch, M. ( 1999; ). Cell type-specific gene expression in the cell cycle of the dimorphic ciliate Eufolliculina uhligi. Mol Gen Genet 262, 390-399.[CrossRef]
    [Google Scholar]
  38. Martin, W. & Müller, M. ( 1998; ). The hydrogen hypothesis for the first eukaryote. Nature 392, 37-41.[CrossRef]
    [Google Scholar]
  39. Mertens, E., Van Schaftingen, E. & Müller, M. ( 1992; ). Pyruvate kinase from Trichomonas vaginalis, an allosteric enzyme stimulated by ribose 5-phosphate and glycerate 3-phosphate. Mol Biochem Parasitol 54, 13-20.[CrossRef]
    [Google Scholar]
  40. Müller, M. ( 1986; ). Reductive activation of nitroimidazoles in anaerobic microorganisms. Biochem Pharmacol 35, 37-41.[CrossRef]
    [Google Scholar]
  41. Müller, M. ( 1988; ). Energy metabolism of protozoa without mitochondria. Annu Rev Microbiol 42, 465-488.[CrossRef]
    [Google Scholar]
  42. Müller, M. ( 1993; ). The hydrogenosome. J Gen Microbiol 139, 2879-2889.[CrossRef]
    [Google Scholar]
  43. Ohnishi, T., Lloyd, D., Lindmark, D. G. & Müller, M. ( 1980; ). Respiration of Tritrichomonas foetus: components detected in hydrogenosomes and in intact cells by electron paramagnetic resonance spectrometry. Mol Biochem Parasitol 2, 39-50.[CrossRef]
    [Google Scholar]
  44. Payne, M. J., Chapman, A. & Cammack, R. ( 1993; ). Evidence for an [Fe]-type hydrogenase in the parasitic protozoan Trichomonas vaginalis. FEBS Lett 317, 101-104.[CrossRef]
    [Google Scholar]
  45. Rouault, T. & Klausner, R. ( 1997; ). Regulation of iron metabolism in eukaryotes. Curr Top Cell Regul 35, 1-19.
    [Google Scholar]
  46. Steinbuchel, A. & Müller, M. ( 1986a; ). Anaerobic pyruvate metabolism of Tritrichomonas foetus and Trichomonas vaginalis hydrogenosomes. Mol Biochem Parasitol 20, 57-65.[CrossRef]
    [Google Scholar]
  47. Steinbuchel, A. & Müller, M. ( 1986b; ). Glycerol, a metabolic end product of Trichomonas vaginalis and Tritrichomonas foetus. Mol Biochem Parasitol 20, 45-55.[CrossRef]
    [Google Scholar]
  48. Swain, M. & Ross, N. W. ( 1995; ). A silver stain protocol for proteins yielding high resolution and transparent background in sodium dodecyl sulfate-polyacrylamide gels. Electrophoresis 16, 948-951.[CrossRef]
    [Google Scholar]
  49. Tachezy, J., Kulda, J., Bahnı́ková, I., Suchan, P., Rázga, J. & Schrével, J. ( 1996; ). Tritrichomonas foetus: iron acquisition from lactoferrin and transferrin. Exp Parasitol 83, 216-228.[CrossRef]
    [Google Scholar]
  50. Tanabe, M. ( 1979; ). Trichomonas vaginalis: NADH oxidase activity. Exp Parasitol 48, 135-143.[CrossRef]
    [Google Scholar]
  51. Ullu, E. & Tschudi, C. ( 1990; ). Permeable trypanosome cells as a model system for transcription and trans-splicing. Nucleic Acids Res 18, 3319-3326.[CrossRef]
    [Google Scholar]
  52. Wang, A. L. & Wang, C. C. ( 1985; ). A linear double-stranded RNA in Trichomonas vaginalis. J Biol Chem 260, 3697-3702.
    [Google Scholar]
  53. Weinbach, E. C., Takeuchi, T., Claggett, C. E., Inohue, F., Kon, H. & Diamond, S. D. ( 1980; ). Role of iron–sulfur proteins in the electron transport system of Entamoeba histolytica. Arch Invest Med (Mex) 11, 75-81.
    [Google Scholar]
  54. Williams, K., Lowe, P. N. & Leadlay, P. F. ( 1987; ). Purification and characterization of pyruvate:ferredoxin oxidoreductase from the anaerobic protozoon Trichomonas vaginalis. Biochem J 246, 529-536.
    [Google Scholar]
  55. Yu, Y., Radisky, E. & Leibold, E. A. ( 1992; ). The iron-responsive element binding protein. Purification, cloning, and regulation in rat liver. J Biol Chem 267, 19005-19010.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-1-53
Loading
/content/journal/micro/10.1099/00221287-147-1-53
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error