1887

Abstract

Competition among three species of ruminal cellulolytic bacteria – S85, FD-1 and 7 – was studied in the presence or absence of the non-cellulolytic ruminal bacteria or . Co-cultures were grown under either batch or continuous conditions and populations were estimated using species-specific oligonucleotide probes to 16S rRNA. The three cellulolytic species co-existed in cellobiose batch co-culture, but inclusion of either or yielded nearly a monoculture of the non-cellulolytic competitor. In cellobiose chemostats, completely dominated the triculture, but became predominant over and when was co-inoculated into the chemostats. Similar effects on competition were observed in the presence of at a lower (0021 h), but not at a higher (0045 h) dilution rate. In cellulose batch co-cultures, was more abundant than both and , regardless of the presence of the non-cellulolytic species. Co-existence among the three cellulolytic species was observed in almost all cellulose chemostats, but altered the relative proportions of the cellulolytic species. and were found to produce inhibitors that suppressed growth of and , respectively. These data indicate that interactions among cellulolytic bacteria, while complex, can be modified further by non-cellulolytic species.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-1-21
2001-01-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/1/1470021a.html?itemId=/content/journal/micro/10.1099/00221287-147-1-21&mimeType=html&fmt=ahah

References

  1. Amann, R. I., Binder, B. J., Olson, R. J., Chisolm, S. W., Deveraux, R. & Stahl, D. A. ( 1990; ). Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56, 1919-1925.
    [Google Scholar]
  2. Debroas, D. & Blanchart, G. ( 1993; ). Interaction between proteolytic and cellulolytic rumen bacteria during hydrolysis of plant cell wall protein. Reprod Nutr Dev 33, 283-288.[CrossRef]
    [Google Scholar]
  3. Dehority, B. A. ( 1973; ). Hemicellulose degradation by rumen bacteria. Fed Proc 32, 1819-1825.
    [Google Scholar]
  4. Dehority, B. A. ( 1993; ). Microbial ecology of cell wall fermentation. In Forage Cell Wall Structure and Digestibility , pp. 425-453. Edited by H. G. Jung, D. R. Buxton, R. D. Hatfield & J. Ralph. Madison, WI:American Society of Agronomy/Crop Science Society of America/Soil Science Society of America.
  5. Dubois, M., Giles, K. A., Hamilton, J. K., Rebers, P. A. & Smith, F. ( 1956; ). Colorimetric method for determination of sugar and related substances. Anal Chem 28, 350-356.[CrossRef]
    [Google Scholar]
  6. Fondevila, M. & Dehority, B. A. ( 1996; ). Interactions between Fibrobacter succinogenes, Prevotella ruminicola, and Ruminococcus flavefaciens in the digestion of cellulose from forages. J Anim Sci 74, 678-684.
    [Google Scholar]
  7. Fredrickson, A. G. & Stephanopoulos, G. ( 1981; ). Microbial competition. Science 213, 972-979.[CrossRef]
    [Google Scholar]
  8. Hansen, S. R. & Hubbell, S. P. ( 1980; ). Single-nutrient microbial competition: qualitative agreement between experiment and theoretically forecast outcomes. Science 28, 1491-1493.
    [Google Scholar]
  9. Horvan, B., Rieu-Lesme, F., Fonty, G. & Gouet, P. ( 1996; ). In vitro interaction between rumen H2-producing cellulolytic microorganisms and H2-utilizing acetogenic and sulfate-reducing bacteria. Anaerobe 2, 175-180.[CrossRef]
    [Google Scholar]
  10. Hungate, R. E. (1966). The Rumen and its Microbes. New York: Academic Press.
  11. Kalmokoff, M. L. & Teather, R. M. ( 1997; ). Isolation and characterization of a bacteriocin (butyrivibriocin AR 10) from the ruminal anaerobe Butyrivibrio fibrisolvens AR10: evidence for the widespread occurrence of bacteriocin-like activity among ruminal isolates of B. fibrisolvens. Appl Environ Microbiol 63, 394-402.
    [Google Scholar]
  12. Kudo, H., Cheng, K. J. & Costerton, J. W. ( 1987; ). Interactions between Treponema bryantii and cellulolytic bacteria in the in vitro digestion of straw cellulose. Can J Microbiol 33, 241-248.
    [Google Scholar]
  13. Mosoni, P., Fonty, G. & Gouet, P. ( 1997; ). Competition between ruminal cellulolytic bacteria for adhesion to cellulose. Curr Microbiol 35, 44-47.[CrossRef]
    [Google Scholar]
  14. Odenyo, A. A., Mackie, R. I., Stahl, D. A. & White, B. A. ( 1994a; ). The use of 16S rRNA-targeted oligonucleotide probes to study competition between ruminal fibrolytic bacteria: development of oligonucleotide probes for Ruminococcus species and evidence for bacteriocin production. Appl Environ Microbiol 60, 3688-3696.
    [Google Scholar]
  15. Odenyo, A. A., Mackie, R. I., Stahl, D. A. & White, B. A. ( 1994b; ). The use of 16S rRNA-targeted oligonucleotide probes to study competition between ruminal fibrolytic bacteria: pure culture studies with cellulose and alkaline peroxide-treated wheat straw. Appl Environ Microbiol 60, 3697-3703.
    [Google Scholar]
  16. Pavlostathis, S. G., Miller, T. L. & Wolin, M. J. ( 1990; ). Cellulose fermentation by continuous cultures of Ruminococcus albus and Methanobrevibacter smithii. Appl Microbiol Biotechnol 33, 109-116.
    [Google Scholar]
  17. Russell, J. B. ( 1985; ). Fermentation of cellodextrins by cellulolytic and noncellulolytic ruminal bacteria. Appl Environ Microbiol 49, 572-576.
    [Google Scholar]
  18. Russell, J. B. & Hino, T. ( 1985; ). Regulation of lactate production in Streptococcus bovis: a spiraling effect that contributes to rumen acidosis. J Dairy Sci 68, 1712-1721.[CrossRef]
    [Google Scholar]
  19. SAS Institute (1985). SAS User’s Guide: Statistics, Version 5. Cary, NC: SAS Institute.
  20. Scheifinger, C. C. & Wolin, M. J. ( 1973; ). Propionate formation from cellulose and soluble sugars by combined cultures of Bacteroides succinogenes and Selenomonas ruminantium. Appl Microbiol 26, 789-795.
    [Google Scholar]
  21. Shi, Y. & Weimer, P. J. ( 1996; ). Utilization of individual cellodextrins by three predominant ruminal cellulolytic bacteria. Appl Environ Microbiol 62, 1084-1088.
    [Google Scholar]
  22. Shi, Y. & Weimer, P. J. ( 1997; ). Competition for cellobiose among three predominant ruminal cellulolytic bacteria under substrate-excess and substrate-limited conditions. Appl Environ Microbiol 63, 743-748.
    [Google Scholar]
  23. Shi, Y., Odt, C. L. & Weimer, P. J. ( 1997; ). Competition for cellulose among three predominant ruminal cellulolytic bacteria under substrate-excess and substrate-limited conditions. Appl Environ Microbiol 63, 734-742.
    [Google Scholar]
  24. Stanton, T. B. & Canale-Parola, E. ( 1980; ). Treponema bryantii sp. nov., a rumen spirochete that interacts with cellulolytic bacteria. Arch Microbiol 127, 145-156.[CrossRef]
    [Google Scholar]
  25. Tagg, J. R., Read, R. S. D. & McGiven, A. R. ( 1973; ). Bacteriocin of a group A Streptococcus: partial purification and properties. Antimicrob Agents Chemother 4, 214-221.[CrossRef]
    [Google Scholar]
  26. Waldo, D. R., Smith, L. W. & Cox, E. L. ( 1972; ). Model of cellulose disappearance from the rumen. J Dairy Sci 55, 125-129.[CrossRef]
    [Google Scholar]
  27. Wallace, D. M. ( 1987; ). Large- and small-scale phenol extractions. Methods Enzymol 152, 33-41.
    [Google Scholar]
  28. Wallace, R. J. ( 1978; ). Control of lactate production by Selenomonas ruminantium: homotropic activation of lactate dehydrogenase by pyruvate. J Gen Microbiol 107, 45-52.[CrossRef]
    [Google Scholar]
  29. Weimer, P. J., Lopez-Guisa, J. M. & French, A. D. ( 1990; ). Effect of cellulose fine structure on kinetics of its digestion by mixed ruminal microorganisms in vitro. Appl Environ Microbiol 54, 2421-2429.
    [Google Scholar]
  30. Weimer, P. J., Shi, Y. & Odt, C. L. ( 1991; ). A segmented gas/liquid delivery system for continuous culture of microorganisms on solid substrates, and its use for growth of Ruminococcus flavefaciens on cellulose. Appl Microbiol Biotechnol 36, 178-183.[CrossRef]
    [Google Scholar]
  31. Weimer, P. J., Waghorn, G. C., Odt, C. L. & Mertens, D. R. ( 1999; ). Effect of diet on populations of three species of ruminal cellulolytic bacteria in lactating dairy cows. J Dairy Sci 82, 122-134.[CrossRef]
    [Google Scholar]
  32. Williams, A. G., Withers, S. E. & Joblin, K. N. ( 1994; ). The effect of cocultivation with hydrogen-consuming bacteria on xylanolysis by Ruminococcus flavefaciens. Curr Microbiol 29, 133-138.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-1-21
Loading
/content/journal/micro/10.1099/00221287-147-1-21
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error