1887

Abstract

The gene encoding periplasmic 2′,3′-cyclic phosphodiesterase in O:8 (designated ), was cloned and expressed in . This enzyme enables to grow on 2′,3′-cAMP as a sole source of carbon and energy. Sequencing and analysis of a 3 kb RI fragment containing the gene revealed an open reading frame of 1179 bp, corresponding to a protein with a molecular mass of 71 kDa. The first 25 amino acid residues show features of a typical prokaryotic signal sequence. The predicted molecular mass of the mature peptide is therefore in agreement with the molecular mass estimated by SDS gel electrophoresis (68 kDa). The putative promoter region contains two possible −10 and −35 regions. Furthermore, the 5′ untranslated region contains sequences with significant homology to the cyclic AMP–cyclic AMP receptor protein binding site and the σ consensus. This region is interrupted by an enterobacterial repetitive intergenic consensus (ERIC) sequence. Deletion of the ERIC element from the promoter region had no effect on expression. In the 3′ untranslated region, a possible rho-independent transcriptional terminator was identified. The deduced amino acid sequence of the CpdB protein shows 76% identity with CpdB of and . CpdB of is exported to the periplasmic space. An isogenic mutant strain, constructed by allelic exchange, was no longer able to grow on 2′,3′-cAMP as sole source of carbon and energy. The CpdB mutant showed no significant change in virulence in an oral and intravenous mouse infection model.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-1-203
2001-01-01
2019-08-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/1/1470203a.html?itemId=/content/journal/micro/10.1099/00221287-147-1-203&mimeType=html&fmt=ahah

References

  1. Abrell, J. W. ( 1971; ). Ribonuclease I released from Escherichia coli by osmotic shock. Arch Biochem Biophys 142, 693-700.[CrossRef]
    [Google Scholar]
  2. Anderson, B., Kahn, D. & Anderson, C. ( 1985; ). Studies of the 2′,3′-cyclic nucleotide phosphodiesterase of Haemophilus influenzae. J Gen Microbiol 131, 2041-2045.
    [Google Scholar]
  3. Anraku, Y. ( 1964; ). A new cyclic phosphodiesterase having 3′-nucleotidase activity from Escherichia coli. I. Purification and some properties of the enzyme. J Biol Chem 239, 3412-3419.
    [Google Scholar]
  4. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. & Struhl, K. (1989). Current Protocols in Molecular Biology. New York: Wiley.
  5. Boyer, H. W. & Roulland Dussoix, D. ( 1969; ). A complementation analysis of the restriction and modification of DNA in E. coli. J Mol Biol 41, 459-472.[CrossRef]
    [Google Scholar]
  6. Brendel, V. & Trifono, E. N. ( 1984; ). A computer algorithm for testing potential prokaryotic terminators. Nucleic Acids Res 12, 4411-4427.[CrossRef]
    [Google Scholar]
  7. Cannistraro, V. J. & Kennell, D. ( 1991; ). Rnase I*, a form of Rnase I, and mRNA degradation in Escherichia coli. J Bacteriol 173, 4653-4659.
    [Google Scholar]
  8. Champagne, D. E., Smartt, C. T., Ribeiro, J. M. & James, A. A. ( 1995; ). The salivary gland specific apyrase of the mosquito Aedes aegypti is a member of the 5′nucleotidase family. Proc Natl Acad Sci U S A 92, 694-698.[CrossRef]
    [Google Scholar]
  9. Dunlap, P. V. & Callahan, S. ( 1993; ). Characterization of a periplasmic 3′:5′-cyclic phosphodiesterase gene, cpdP, from the marine symbiotic bacterium Vibrio fischeri. J Bacteriol 175, 4615-4624.
    [Google Scholar]
  10. Ferro-Luzzi Ames, G., Prody, C. & Kustu, S. ( 1984; ). Simple, rapid and quantitative release of periplasmatic proteins by chloroform. J Bacteriol 160, 1181-1183.
    [Google Scholar]
  11. Friedmann, A. M., Long, S. R., Brown, S. E., Buikema, W. J. & Ausubel, F. M. ( 1982; ). Construction of a broad range cosmid cloning vector and its use in the genetic analysis of Rhizobium mutants. Gene 18, 289-296.[CrossRef]
    [Google Scholar]
  12. Gilson, E., Rousset, J., Clement, J. M. & Hofnung, M. ( 1986; ). A subfamily of E. coli palindromic units implicated in transcription termination? Ann Inst Pasteur Microbiol 137B, 259–270.
    [Google Scholar]
  13. Hanahan, D. ( 1983; ). Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166, 557-580.[CrossRef]
    [Google Scholar]
  14. Heesemann, J. ( 1987; ). Chromosomal-encoded siderophores are required for mouse virulence of enteropathogenic Yersinia species. FEMS Microbiol Lett 32, 229-233.
    [Google Scholar]
  15. Heesemann, J. & Laufs, R. ( 1983; ). Construction of a mobilizable Yersinia enterocolitica virulence plasmid. J Bacteriol 155, 761-767.
    [Google Scholar]
  16. Heesemann, J., Keller, C., Morawa, R., Schmidt, N., Siemens, J. & Laufs, R. ( 1983; ). Plasmids of human strains of Yersinia enterocolitica: molecular relatedness and possible importance for pathogenesis. J Infect Dis 147, 107-115.[CrossRef]
    [Google Scholar]
  17. Helman, J. D. ( 1991; ). Alternative sigma factors and the regulation of flagellar gene expression. Mol Microbiol 5, 2875-2882.[CrossRef]
    [Google Scholar]
  18. Hulton, C., Higgins, C. & Sharp, P. ( 1991; ). ERIC sequences: a novel family of repetitive elements in the genomes of Escherichia coli, Salmonella typhimurium and other enterobacteria. Mol Microbiol 5, 825-834.[CrossRef]
    [Google Scholar]
  19. Iriarte, M., Stainier, I., Mikulskis, A. & Cornelis, G. ( 1995; ). The fliA gene encoding in Yersinia enterocolitica. J Bacteriol 177, 2299-2304.
    [Google Scholar]
  20. Jacobi, C., Roggenkamp, A., Rakin, A., Zumbihl, R., Leitritz, L. & Heesemann, J. ( 1998; ). In vitro and in vivo expression studies of yopE from Yersinia enterocolitica using the gfp reporter gene. Mol Microbiol 30, 865-882.[CrossRef]
    [Google Scholar]
  21. Kier, L., Weppelmann, R. & Ames, B. ( 1977; ). Regulation of two phosphatases and a cyclic phosphodiesterase of Salmonella typhimurium. J Bacteriol 130, 420-428.
    [Google Scholar]
  22. Kolb, A., Busby, S., Buc, H., Garges, S. & Adhya, S. ( 1993; ). Transcriptional regulation by cAMP and its receptor protein. Annu Rev Biochem 62, 749-95.[CrossRef]
    [Google Scholar]
  23. Liu, J. & Beacham, I. ( 1990; ). Transcription and regulation of the cpdB gene in E. coli K12 and Salmonella typhimurium LT2: evidence for modulation of constitutive promoters by cyclic AMP–CRP complex. Mol Gen Genet 222, 161-165.
    [Google Scholar]
  24. Liu, J., Burns, D. & Beacham, I. ( 1986; ). Isolation and sequence analysis of the gene (cpdB) encoding periplasmic 2′,3′-cyclic phosphodiesterase. J Bacteriol 165, 1002-1010.
    [Google Scholar]
  25. Miller, J. H. (1972). Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  26. Neu, H. ( 1968a; ). The cyclic phosphodiesterases (3′-nucleotidases) of the Enterobacteriaceae. Biochemistry 7, 3774-3780.[CrossRef]
    [Google Scholar]
  27. Neu, H. ( 1968b; ). The 5′-nucleotidases and cyclic phosphodiesterases (3′-nucleotidases) of the Enterobacteriaceae. J Bacteriol 95, 1732-1737.
    [Google Scholar]
  28. Neu, H. & Chou, J. ( 1967; ). Release of surface enzymes in Enterobacteriaceae by osmotic shock. J Bacteriol 94, 1934.
    [Google Scholar]
  29. Neuwald, A., Krishnan, B., Brikun, I., Kulakauskas, S., Suziedelis, K., Tomcsanyi, T., Leyh, T. & Berg, D. ( 1992; ). cysQ, a gene needed for cysteine synthesis in Escherichia coli K-12 only during aerobic growth. J Bacteriol 174, 415-425.
    [Google Scholar]
  30. Newbury, S. F., Smith, N. H., Robinson, E. C., Hiles, I. D. & Higgins, C. F. ( 1987a; ). Stabilization of translationally active mRNA by prokaryotic REP sequences. Cell 48, 297-310.[CrossRef]
    [Google Scholar]
  31. Newbury, S. F., Smith, N. H. & Higgins, C. F. ( 1987b; ). Differential mRNA stability controls relative gene expression within a polycistronic operon. Cell 51, 1131-1143.[CrossRef]
    [Google Scholar]
  32. Ölschläger, T. & Braun, V. ( 1987; ). Sequence, expression, and localization of the immunity protein for colicin M. J Bacteriol 5, 4765-4769.
    [Google Scholar]
  33. Pugsley, A. ( 1993; ). The complete general secretory pathway in gram negative bacteria. Microbiol Rev 57, 50-108.
    [Google Scholar]
  34. Rakin, A., Saken, E., Harmsen, D. & Heesemann, J. ( 1994; ). The pesticin receptor of Yersinia enterocolitica: a novel virulence factor with dual function. Mol Microbiol 13, 253-263.[CrossRef]
    [Google Scholar]
  35. Ratnam, S., Mercer, E., Picco, B., Parsons, S. & Butler, R. ( 1982; ). A nosocomial outbreak of diarrheal disease due to Yersinia enterocolitica serotype O:5, biotype 1. J Infect Dis 145, 242.[CrossRef]
    [Google Scholar]
  36. Roggenkamp, A., Neuberger, H. R., Flügel, A., Schmoll, T. & Heesemann, J. ( 1995; ). Substitution of two histidine residues in Yad A protein of Yersinia enterocolitica abrogates collagen binding, cell adherence, and mouse virulence. Mol Microbiol 16, 1207-1219.[CrossRef]
    [Google Scholar]
  37. Rudolph, A. E., Stuckey, J. A., Zhao, Y., Matthews, H. R., Patton, W. A., Moss, J. & Dixon, J. E. ( 1999; ). Expression, characterization, and mutagenesis of the Yersinia pestis murine toxin, a phospholipase D superfamily member. J Biol Chem 274, 11824–11831.[CrossRef]
    [Google Scholar]
  38. Simon, R., Priefer, U. & Pühler, A. ( 1988; ). A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Biotechnology 1, 784-791.
    [Google Scholar]
  39. Skorupski, K. & Taylor, K. ( 1996; ). Positive selection vectors for allelic exchange. Gene 169, 47-52.[CrossRef]
    [Google Scholar]
  40. Stern., M. J., Prossnitz, E. & Ames, G. F.-L. ( 1988; ). Role of the intercistronic region in post-transcriptional control of gene expression in the histidine transport operon of Salmonella typhimurium: involvement of REP sequences. Mol Microbiol 2, 141-152.[CrossRef]
    [Google Scholar]
  41. Tabor, S. & Richardson, C. ( 1985; ). A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci U S A 82, 1074-1078.[CrossRef]
    [Google Scholar]
  42. Tinoco, J., Borer, P. N., Dengler, B., Levine, M. D., Uhlenbeck, O. C., Crothers, D. M. & Gralla, J. ( 1973; ). Improved estimation of secondary structure in ribonucleic acids. Nature New Biol 246, 40-41.[CrossRef]
    [Google Scholar]
  43. Unemoto, T., Takahashi, F. & Hayashi, M. ( 1969; ). Relationship between the active sites of 2′,3′-cyclic phosphodiesterase with 3′-nucleotidase activity from Vibrio alginolyticus. Biochim Biophys Acta 185, 134-142.[CrossRef]
    [Google Scholar]
  44. Vogel, U. S. & Thompson, R. J. ( 1988; ). Molecular structure, localization, and possible functions of 2′,3′-cyclic nucleotide 3′-phosphodiesterase. J Neurochem 50, 1667-1677.[CrossRef]
    [Google Scholar]
  45. Yamamoto, H., Uchiyama, S. & Sekiguchi, J. ( 1996; ). Cloning and sequencing of a 40·6 kb segment in the 73 °–76 ° region of the Bacillus subtilis chromosome containing genes for trehalose metabolism and acetoin utilization. Microbiology 142, 3057-3065.[CrossRef]
    [Google Scholar]
  46. Young, G. & Miller, V. ( 1997; ). Identification of novel chromosomal loci affecting Yersinia enterocolitica pathogenesis. Mol Microbiol 25, 319-328.[CrossRef]
    [Google Scholar]
  47. Zimmermann, H. ( 1992; ). 5′-Nucleotidase: molecular structure and functional aspects. Biochem J 285, 345-365.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-1-203
Loading
/content/journal/micro/10.1099/00221287-147-1-203
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error