1887

Abstract

, a black-pigmenting anaerobe implicated in the aetiology of periodontal disease, contains two loci, and , encoding the extracellular Arg-X specific proteases (RGPs, Arg-gingipains), and , which encodes a Lys-X specific protease (KGP, Lys-gingipain). The and genes encode polyproteins comprising pro-peptide and catalytic domain with large N- and C-terminal extensions which require proteolytic processing at several Arg and Lys residues to generate mature enzymes. The product of contains only a pro-peptide and the catalytic domain which requires processing at an Arg residue to generate active enzyme. An double mutant (E8) of was constructed to study the role of RGPs in the processing of KGP. A mutant (K1A) was also studied to investigate the role of KGP in the generation of RGPs. E8 was stable in the absence of the antibiotics tetracycline and clindamycin (selection markers for and , respectively) and exhibited the same pigmentation, colony morphology and identical growth rates to the parent W50 strain in the absence of antibiotics, in both complex and chemically defined media. The KGP activity of E8, grown in the absence of tetracycline, in whole cultures and in culture supernatants (up to 6 d) was identical to levels in W50. However, in the presence of tetracycline in the growth medium, the level of KGP was reduced to 50% of levels present in whole cultures of W50. Since tetracycline had no effect on RGP or KGP activity when incorporated into assay buffer, this effect is most likely to be on the synthesis of Kgp polypeptide. K1A was also stable in the absence of antibiotics but was unable to pigment, and remained straw-coloured throughout growth. RGP activity in whole cultures of K1A was identical to levels in W50, but RGP activity in 6 d culture supernatants was reduced to 50% of levels present in W50. Thus, although KGP is not required for generation of RGP activity from RgpA and RgpB polypeptides, its absence affects the release/transport of RGP into culture supernatant.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-8-1933
2000-08-01
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/8/1461933a.html?itemId=/content/journal/micro/10.1099/00221287-146-8-1933&mimeType=html&fmt=ahah

References

  1. Aduse-Opoku J., Muir J., Slaney J. M., Rangarajan M., Curtis M. A.. 1995; Characterization, genetic analysis, and expression of a protease antigen (PrpRI) of Porphyromonas gingivalis W50. Infect Immun63:4744–4754
    [Google Scholar]
  2. Aduse-Opoku J., Rangarajan M., Young K. A., Curtis M. A.. 1998; Maturation of the arginine-specific proteases of Porphyromonas gingivalis W50 is dependent on functional prR2 protease gene. Infect Immun66:1594–1600
    [Google Scholar]
  3. Birkedal-Hansen H., Taylor R. E., Zambon J. J., Barwa P. K., Neiders M. E.. 1988; Characterization of collagenolytic activity from strains of Bacteroides gingivalis. J Periodontal Res23:258–264[CrossRef]
    [Google Scholar]
  4. Carlsson J., Hermann B. F., Hofling J. F., Sundqvist G. K.. 1984; Degradation of the human proteinase inhibitors alpha-1-antitrypsin and alpha-2-macroglobulin by Bacteroides gingivalis. Infect Immun43:644–648
    [Google Scholar]
  5. Curtis M. A., Kuramitsu H., Lantz M., Macrina F., Nakayama K., Potempa J., Reynolds E., Aduse-Opoku J.. 1999; Molecular genetics and nomenclature of proteases of Porphyromonas gingivalis. J Periodontal Res34:464–472[CrossRef]
    [Google Scholar]
  6. Dzink J. L., Socransky S. S., Haffajee A. D.. 1988; The predominant cultivable microbiota of active and inactive lesions of destructive periodontal-diseases. J Clin Periodontol15:316–323[CrossRef]
    [Google Scholar]
  7. Holt S. C., Ebersole J., Felton J., Brunsvold M., Kornman K. S.. 1988; Implantation of Bacteroides gingivalis in non-human primates initiates progression of periodontitis. Science239:55–57[CrossRef]
    [Google Scholar]
  8. Kadowaki T., Nakayama K., Yoshimura F., Okamoto K., Abe N., Yamamoto K.. 1998; Arg-gingipain acts as a major processing enzyme for various cell surface proteins in Porphyromonas gingivalis. J Biol Chem273:29072–29076[CrossRef]
    [Google Scholar]
  9. Kato J., Takahashi N., Kuramitsu H.. 1992; Sequence analysis and characterization of the Porphyromonas gingivalis prtC gene which expresses a novel collagenase activity. J Bacteriol174:3889–3895
    [Google Scholar]
  10. Kilian M.. 1981; Degradation of immunoglobulins A1, A2, and G by suspected principal periodontal pathogens. Infect Immun34:757–765
    [Google Scholar]
  11. Laemmli U. K.. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227:680–685[CrossRef]
    [Google Scholar]
  12. Lamont R. J., Jenkinson H. F.. 1998; Life below the gum line: pathogenic mechanisms of Porphyromonas gingivalis. Microbiol Mol Biol Rev62:1244–1263
    [Google Scholar]
  13. Lewis J. P., Macrina F. L.. 1999; Localization of HArep-containing genes on the chromosome of Porphyromonas gingivalis W83. Infect Immun67:2619–2623
    [Google Scholar]
  14. Lewis J. P., Dawson J. A., Hannis J. C., Muddiman D., Macrina F. L.. 1999; Hemoglobinase activity of the lysine gingipain protease (Kgp) of Porphyromonas gingivalis. J Bacteriol181:4905–4913
    [Google Scholar]
  15. Maley J., Shoemaker N. B., Roberts I. S.. 1992; Introduction of colonic-Bacteroides shuttle plasmids into Porphyromonas gingivalis: identification of a putative P. gingivalis insertion-sequence element. FEMS Microbiol Lett93:219–224
    [Google Scholar]
  16. Milner P., Batten J. E., Curtis M. A.. 1996; Development of a simple chemically defined medium for Porphyromonas gingivalis: requirement for α-ketoglutarate. FEMS Microbiol Lett140:125–130
    [Google Scholar]
  17. Nakayama K.. 1997; Domain-specific rearrangement between the two Arg-gingipain-encoding genes in Porphyromonas gingivalis: possible involvement of nonreciprocal recombination. Microbiol Immunol41:185–196[CrossRef]
    [Google Scholar]
  18. Nakayama K., Yoshimura F., Kadowaki T., Yamamoto K.. 1996; Involvement of arginine-specific cysteine protease (Arg-gingipain) in fimbriation of Porphyromonas gingivalis. J Bacteriol178:2818–2824
    [Google Scholar]
  19. Nakayama K., Ratnayake D. B., Tsukuba T., Kadowaki T., Yamamoto K., Fujimura S.. 1998; Haemoglobin receptor protein is intragenically encoded by the cysteine proteinase-encoding genes and the haemagglutinin-encoding gene of Porphyromonas gingivalis. Mol Microbiol27:51–61[CrossRef]
    [Google Scholar]
  20. Okamoto K., Kadowaki T., Nakayama K., Yamamoto K.. 1996; Cloning and sequencing of the gene encoding a novel lysine-specific cysteine protease (Lys-gingipain) in Porphyromonas gingivalis: structural relationship with the arginine-specific cysteine protease (Arg-gingipain). J Biochem120:398–406[CrossRef]
    [Google Scholar]
  21. Okamoto K., Nakayama K., Kadowaki T., Abe N., Ratnayake D. B., Yamamoto K.. 1998; Involvement of a lysine-specific cysteine protease in hemoglobin adsorption and heme accumulation by Porphyromonas gingivalis. J Biol Chem273:21225–21231[CrossRef]
    [Google Scholar]
  22. Pavloff N., Potempa J., Pike R. N., Prochazka V., Kiefer M. C., Travis J., Barr P. J.. 1995; Molecular cloning and structural characterization of the Arg-gingipain proteinase of Porphyromonas gingivalis. Biosynthesis as a proteinase-adhesin polyprotein. J Biol Chem270:1007–1010[CrossRef]
    [Google Scholar]
  23. Pavloff N., Pemberton P. A., Potempa J., Chen W.-C. A., Pike R. N., Prochazka V., Kiefer M. C., Travis J., Barr P. J.. 1997; Molecular cloning and characterization of Porphyromonas gingivalis Lys-gingipain. A new member of an emerging family of pathogenic bacterial cysteine proteinases. J Biol Chem272:1595–1600[CrossRef]
    [Google Scholar]
  24. Pike R., McGraw W., Potempa J., Travis J.. 1994; Lysine- and arginine-specific proteinases from Porphyromonas gingivalis. Isolation, characterization and evidence for the existence of complexes with hemagglutinins. J Biol Chem269:406–411
    [Google Scholar]
  25. Rangarajan M., Smith S. J. M., U S., Curtis M. A.. 1997a; Biochemical characterization of the arginine-specific proteases of Porphyromonas gingivalis W50 suggests a common precursor. Biochem J323:701–709
    [Google Scholar]
  26. Rangarajan M., Aduse-Opoku J., Slaney J. M., Young K. A., Curtis M. A.. 1997b; The prpR1 and prR2 arginine-specific protease genes of Porphyromonas gingivalis W50 produce five biochemically distinct enzymes. Mol Microbiol23:955–966[CrossRef]
    [Google Scholar]
  27. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  28. Sato M., Otsuka M., Maehara R., Endo J., Nakamura R.. 1987; Degradation of human secretory immunoglobulin A by protease isolated from the anaerobic periodontopathogenic bacterium, Bacteroides gingivalis. Arch Oral Biol32:235–238[CrossRef]
    [Google Scholar]
  29. Schenkein H. A., Berry C. R.. 1988; Production of chemotactic factors for neutrophils following the interaction of Bacteroides gingivalis with purified C5. J Periodontal Res23:187–192[CrossRef]
    [Google Scholar]
  30. Shi Y., Ratnayake D. B., Okamoto K., Abe N., Yamamoto K., Nakayama K.. 1999; Genetic analysis of proteolysis, hemoglobin binding, and hemagglutination of Porphyromonas gingivalis. Construction of mutants with a combination of rgpA, rgpB, kgp and hagA. J Biol Chem274:17955–17960[CrossRef]
    [Google Scholar]
  31. Slakeski N., Cleal S. M., Bhogal P. S., Reynolds E. C.. 1999; Characterisation of a Porphyromonas gingivalis gene prtK that encodes a lysine specific cysteine proteinase and three sequence-related adhesins. Oral Microbiol Immunol14:92–97[CrossRef]
    [Google Scholar]
  32. Slots J., Bragd L., Wikström M., Dahlen G.. 1986; The occurrence of Actinobacillus actinomycetemcomitans, Bacteroides gingivalis and Bacteroides intermedius in destructive periodontal disease in adults. J Clin Periodontol13:576–577
    [Google Scholar]
  33. Smalley J. W., Birss A. J., Shuttleworth C. A.. 1988; The degradation of type-1 collagen and human plasma fibronectin by the trypsin-like enzyme and extracellular membrane vesicles of Bacteroides gingivalis W50. Arch Oral Biol33:323–329[CrossRef]
    [Google Scholar]
  34. Sundqvist G., Carlsson J., Hermann B., Tarnvik A.. 1985; Degradation of human immunoglobulins G and M and complement factors C3 and C5 by black-pigmented Bacteroides. J Med Microbiol19:85–94[CrossRef]
    [Google Scholar]
  35. Uitto V.-J., Larjava H., Heino J., Sorsa T.. 1989; A protease of Bacteroides gingivalis degrades cell surface and matrix glycoproteins of cultured gingival fibroblasts and induces secretion of collagenase and plasminogen activator. Infect Immun57:213–218
    [Google Scholar]
  36. Wingrove J. A., DiScipio R. G., Chen Z., Potempa J., Travis J., Hugli T. E.. 1992; Activation of complement components C3 and C5 by a cysteine proteinase (gingipain-1) from Porphyromonas (Bacteroides) gingivalis. J Biol Chem267:18902–18907
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-8-1933
Loading
/content/journal/micro/10.1099/00221287-146-8-1933
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error