1887
Preview this article:
Zoom in
Zoomout

Transcription factors in – environmental control of morphogenesis, Page 1 of 1

| /docserver/preview/fulltext/micro/146/8/1461763a-1.gif

There is no abstract available for this article.
Use the preview function to the left.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-8-1763
2000-08-01
2020-02-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/8/1461763a.html?itemId=/content/journal/micro/10.1099/00221287-146-8-1763&mimeType=html&fmt=ahah

References

  1. Alex L. A., Korch C., Selitrennikoff C. P., Simon M. I.. 1998; COS1, a two-component histidine kinase that is involved in hyphal development in the opportunistic pathogen Candida albicans. Proc Natl Acad Sci USA95:7069–7073[CrossRef]
    [Google Scholar]
  2. Alonso-Monge R., Navarro-Garcı́a F., Molero G., Diez-Orejas R., Gustin M., Pla J., Sánchez M., Nombela C.. 1999; Role of the mitogen-activated protein kinase Hog1p in morphogenesis and virulence of Candida albicans. J Bacteriol181:3058–3068
    [Google Scholar]
  3. Aramayo R., Peleg Y., Addison R., Metzenberg R.. 1996; Asm-1 +, a Neurospora crassa gene related to transcriptional regulators of fungal development. Genetics144:991–1003
    [Google Scholar]
  4. Bailey D. A., Feldmann P. J. F., Bovey M., Gow N. A. R., Brown A. J. P.. 1996; The Candida albicans HYR1 gene, which is activated in response to hyphal development, belongs to a gene family encoding yeast cell wall proteins. J Bacteriol178:5353–5360
    [Google Scholar]
  5. Banuett F.. 1998; Signalling in yeasts: an informational cascade with links to the filamentous fungi. Microbiol Mol Biol Rev62:249–274
    [Google Scholar]
  6. Bernards R.. 1995; Flipping the Myc switch. Curr Biol5:859–861[CrossRef]
    [Google Scholar]
  7. Birse C. E., Irwin M. Y., Fonzi W. A., Sypherd P. S.. 1993; Cloning and characterization of ECE1, a gene expressed in association with cell elongation of the dimorphic pathogen Candida albicans. Infect Immun61:3648–3655
    [Google Scholar]
  8. Braun B. R., Johnson A. D.. 1997; Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science277:105–109[CrossRef]
    [Google Scholar]
  9. Braun B. R., Johnson A. D.. 2000; TUP1, CPH1 and EFG1 make independent contributions to filamentation in Candida albicans. Genetics155:57–67
    [Google Scholar]
  10. Brown D. H. Jr, Giusani A. D., Chen X., Kumamoto C.. 1999; Filamentous growth of Candida albicans in response to physical environmental cues and its regulation by the unique CZF1 gene. Mol Microbiol34:651–662[CrossRef]
    [Google Scholar]
  11. Buffo J., Herman M. A., Soll D. R.. 1984; A characterization of pH-regulated dimorphism in Candida albicans. Mycopathologia85:21–30[CrossRef]
    [Google Scholar]
  12. Calera J. A., Calderone R.. 1999; Flocculation of hyphae is associated with a deletion in the putative CaHK1 two-component histidine kinase gene from Candida albicans. Microbiology145:1431–1442[CrossRef]
    [Google Scholar]
  13. Calera J. A., Zhao X. J., Calderone R.. 2000; Defective hyphal development and avirulence caused by a deletion of the SSK1 response regulator gene in Candida albicans. Infect Immun68:518–525[CrossRef]
    [Google Scholar]
  14. Chaffin W. L.. 1984; Site selection for bud and germ tube emergence in Candida albicans. J Gen Microbiol130:431–440
    [Google Scholar]
  15. Chant J.. 1994; Cell polarity in yeast. Trends Genet10:328–333[CrossRef]
    [Google Scholar]
  16. Cormack B. P., Bertram G., Egerton M., Gow N. A. R., Falkow S., Brown A. J. P.. 1997; Yeast-enhanced green fluorescent protein (yEGFP): a reporter of gene expression in Candida albicans. Microbiology143:303–311[CrossRef]
    [Google Scholar]
  17. Csank C., Makris C., Meloche S., Schröppel K., Röllinghoff M., Dignard D., Thomas D. Y., Whiteway M.. 1997; Derepressed hyphal growth and reduced virulence in a VH1 family-related protein phosphatase mutant of the human pathogen Candida albicans. Mol Biol Cell8:2539–2551[CrossRef]
    [Google Scholar]
  18. Csank C., Schröppel K., Leberer E., Harcus D., Mohamed O., Meloche S., Thomas D. Y., Whiteway M.. 1998; Roles of the Candida albicans mitogen-activated protein kinase homolog, Cek1p, in hyphal development and systemic candidiasis. Infect Immun66:2713–2721
    [Google Scholar]
  19. Delbrück S., Ernst J. F.. 1993; Morphogenesis-independent regulation of actin transcript levels in the pathogenic yeast Candida albicans. Mol Microbiol10:859–866[CrossRef]
    [Google Scholar]
  20. Delbrück S., Sonneborn A., Gerads M., Grablowitz A. H., Ernst J. F.. 1997; Characterization and regulation of the genes encoding ribosomal proteins L39 and S7 of the human pathogen Candida albicans. Yeast13:1199–1210[CrossRef]
    [Google Scholar]
  21. Drazinic C. M., Smerage J. B., Lopez M. C., Baker H.. 1996; Activation mechanism of the multifunctional transcription factor repressor-activator protein 1. Mol Cell Biol16:3187–3196
    [Google Scholar]
  22. Dutton J. R., Johns S., Miller B. L.. 1997; StuAp is a sequence-specific transcription factor that regulates developmental complexity in Aspergillus nidulans. EMBO J16:5710–5721[CrossRef]
    [Google Scholar]
  23. Ernst J. F.. 2000; Regulation of dimorphism in Candida albicans. In Contributions to Microbiologyvol. 5Dimorphism in Human Pathogenic and Apathogenic Yeasts pp98–111Edited by Ernst J. F., Schmidt A.. Basel: Karger;
    [Google Scholar]
  24. Facchini L. M., Chen S., Marhin W. W., Lear J. N., Penn L. Z.. 1997; The Myc negative autoregulation mechanism requires Myc–Max association and involves the c-myc P2 minimal promoter. Mol Cell Biol17:100–114
    [Google Scholar]
  25. Feng Q., Summers E., Guo B., Fink G.. 1999; Ras signalling is required for serum-induced hyphal differentiation in Candida albicans. J Bacteriol181:6339–6346
    [Google Scholar]
  26. Fonzi W. A.. 1999; PHR1 and PHR2 of Candida albicans encode putative glycosidases required for proper cross-linking of β-1,3- and β-1,6-glucans. J Bacteriol181:7070–7079
    [Google Scholar]
  27. Fonzi W. A., Irwin M. Y.. 1993; Isogenic strain construction and gene mapping in Candida albicans. Genetics134:717–728
    [Google Scholar]
  28. Gimeno C. J., Fink G. R.. 1994; Induction of pseudohyphal growth by overexpression of PHD1, a Saccharomyces cerevisiae gene related to transcriptional regulators of fungal development. Mol Cell Biol14:2100–2112
    [Google Scholar]
  29. Gimeno C. J., Ljungdahl P. O., Styles C. A., Fink G. R.. 1992; Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell68:1077–1090[CrossRef]
    [Google Scholar]
  30. Gow N. A. R., Robbins P. W., Leister J. W., Brown A. J. P., Fonzi W. A., Chapman T., Kinsman O. S.. 1994; A hyphal-specific chitin synthase gene (CHS2) is not essential for growth, dimorphism, or virulence of Candida albicans. Proc Natl Acad Sci USA91:6216–6220[CrossRef]
    [Google Scholar]
  31. Hawser S., Francolini M., Islam K.. 1996; The effects of antifungal agents on the morphogenetic transformation by Candida albicans in vitro. J Antimicrob Chemother38:579–587[CrossRef]
    [Google Scholar]
  32. Hoyer L. L., Payne T. L., Bell M., Myers A. M., Scherer S.. 1998; Candida albicans ALS3 and insights into the nature of the ALS gene family. Curr Genet33:451–459[CrossRef]
    [Google Scholar]
  33. Hube B.. 1996; Candida albicans secreted aspartyl proteinases. Curr Top Med Mycol7:55–69
    [Google Scholar]
  34. Hull C. M., Johnson A. D.. 1999; Identification of a mating type-like locus in the asexual pathogenic yeast Candida albicans. Science285:1271–1275[CrossRef]
    [Google Scholar]
  35. Ishii N., Yamamoto M., Yoshihara F., Arisawa M., Aoki Y.. 1997; Biochemical and genetic characterization of Rbf1p, a putative transcription factor of Candida albicans. Microbiology143:429–435[CrossRef]
    [Google Scholar]
  36. Janbon G., Sherman F., Rustchenko E.. 1999; Appearance and properties of l-sorbose-utilizing mutants of Candida albicans obtained on a selective plate. Genetics153:653–664
    [Google Scholar]
  37. Joshi K. R., Solanki A., Prakash P.. 1993; Morphological identification of Candida species on glucose agar, rice extract agar and corn meal agar with and without Tween-80. Indian J Pathol Microbiol36:48–52
    [Google Scholar]
  38. Kalo-Klein A., Witkin S. S.. 1990; Prostaglandin E2 enhances and gamma interferon inhibits germ tube formation in Candida albicans. Infect Immun58:260–262
    [Google Scholar]
  39. Keleher C. A., Redd M. J., Schultz J., Carlson M., Johnson A. D.. 1992; Ssn6-Tup1 is a general repressor of transcription in yeast. Cell68:709–719[CrossRef]
    [Google Scholar]
  40. Köhler J. R., Fink G. R.. 1996; Candida albicans strains heterozygous and homozygous in mitogen-activated protein kinase signalling components have defects in hyphal development. Proc Natl Acad Sci USA93:13223–13228[CrossRef]
    [Google Scholar]
  41. Komachi K., Johnson A. D.. 1997; Residues in the WD repeats of Tup1 required for interaction with alpha2. Mol Cell Biol17:6023–6028
    [Google Scholar]
  42. Leberer E., Harcus D., Broadbent I. D..7 other authors 1996; Signal transduction through homologs of the Ste20p and Ste7p protein kinases can trigger hyphal formation in the pathogenic fungus Candida albicans. Proc Natl Acad Sci USA93:13217–13222[CrossRef]
    [Google Scholar]
  43. Leng P., Sudbery P. E., Brown A. J. P.. 2000; Rad6p represses yeast–hypha morphogenesis in the human fungal pathogen, Candida albicans. Mol Microbiol35:1264–1275[CrossRef]
    [Google Scholar]
  44. Leuker C. E., Hahn A.-M., Ernst J. F.. 1992; β-Galactosidase of Kluyveromyces lactis (Lac4p) as reporter of gene expression in Candida albicans and C. tropicalis. Mol Gen Genet235:235–241[CrossRef]
    [Google Scholar]
  45. Levitz S. M., North E. A.. 1996; Gamma interferon gene expression and release in human lymphocytes directly activated by Cryptococcus neoformans and Candida albicans. Infect Immun64:1595–1599
    [Google Scholar]
  46. Liu H., Styles C. A., Fink G. R.. 1993; Elements of the yeast pheromone response pathway required for filamentous growth of diploids. Science262:1741–1744[CrossRef]
    [Google Scholar]
  47. Liu H., Köhler J., Fink G. R.. 1994; Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science266:1723–1725[CrossRef]
    [Google Scholar]
  48. Lo H.-J., Köhler J. R., Didomenico B., Loebenberg D., Cacciapuoti A., Fink G. R.. 1997; Nonfilamentous C. albicans mutants are avirulent. Cell90:939–949[CrossRef]
    [Google Scholar]
  49. Loeb J. D. J., Sepulveda-Becerra M., Hazan I., Liu H.. 1999; A G1 cyclin is necessary for maintenance of filamentous growth in Candida albicans. Mol Cell Biol19:4019–4027
    [Google Scholar]
  50. Madhani H. D., Fink G. R.. 1997; Combinatorial control required for the specificity of yeast MAPK signalling. Science275:1314–1317[CrossRef]
    [Google Scholar]
  51. Martinez J. P., Lopez-Ribot J. L., Gil M. L., Sentandreu R., Ruiz-Herrera J.. 1990; Inhibition of the dimorphic transition of Candida albicans by the ornithine decarboxylase inhibitor 1,4-diaminobutanone: alterations in the glycoprotein composition of the cell wall. J Gen Microbiol136:1937–1943[CrossRef]
    [Google Scholar]
  52. Miller K. Y., Wu J., Miller B. L.. 1992; StuA is required for cell pattern formation in Aspergillus. Genes Dev6:1770–1782[CrossRef]
    [Google Scholar]
  53. Mösch H.-U., Roberts R. L., Fink G. R.. 1996; Ras2 signals via the Cdc42/Ste20/mitogen-activated protein kinase module to induce filamentous growth in Saccharomyces cerevisiae. Proc Natl Acad Sci USA93:5352–5356[CrossRef]
    [Google Scholar]
  54. Montazeri M., Hedrick H. G.. 1984; Factors affecting spore formation in a Candida albicans strain. Appl Environ Microbiol47:1341–1342
    [Google Scholar]
  55. Morschhäuser J., Michel S., Staib P.. 1999; Sequential gene disruption in Candida albicans by FLP-mediated site-specific recombination. Mol Microbiol32:547–556[CrossRef]
    [Google Scholar]
  56. Nagahashi S., Mio T., Ono N., Yamada-Okabe T., Arisawa M., Bussey H., Yamada-Okabe H.. 1998; Isolation of CaSLN1 and CaNIK1, the genes for osmosensing histidine kinase homologues, from the pathogenic fungus Candida albicans. Microbiology144:425–432[CrossRef]
    [Google Scholar]
  57. Navarro-Garcı́a F., Sánchez M., Pla J., Nombela C.. 1995; Functional characterization of the MKC1 gene of Candida albicans, which encodes a mitogen-activated protein kinase homolog related to cell integrity. Mol Cell Biol15:2197–2206
    [Google Scholar]
  58. Navarro-Garcı́a F., Alonso-Monge R., Rico H., Pla J., Sentandreu R., Nombela C.. 1998; A role for the MAP kinase gene MKC1 in cell wall construction and morphological transitions in Candida albicans. Microbiology144:411–424[CrossRef]
    [Google Scholar]
  59. Niimi M.. 1996; Dibutyryl cyclic AMP-enhanced germ tube formation in exponentially growing Candida albicans cells. Fungal Genet Biol20:79–83[CrossRef]
    [Google Scholar]
  60. Niimi M., Niimi K., Tokunaga J., Nakayama H.. 1980; Changes in cyclic nucleotide levels and dimorphic transition in Candida albicans. J Bacteriol142:1010–1014
    [Google Scholar]
  61. Odds F. C.. 1988; Candida and Candidosis, 2nd edn. London: Baillière Tindall;
    [Google Scholar]
  62. O’Rourke S. M., Herskowitz I.. 1998; The Hog1 MAPK prevents cross talk between the HOG and pheromone response MAPK pathways in Saccharomyces cerevisiae. Genes Dev12:2874–2886[CrossRef]
    [Google Scholar]
  63. Pan X., Heitman J.. 1999; Cyclic AMP-dependent protein kinase regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Mol Cell Biol19:4874–4887
    [Google Scholar]
  64. Paravicini G., Menoza A., Antonsson B., Cooper M., Losberger C., Payton M. A.. 1996; The Candida albicans PCK1 gene encodes a protein kinase C homolog necessary for cellular integrity but not dimorphism. Yeast12:741–756[CrossRef]
    [Google Scholar]
  65. Perez-Martin J., Uria J. A., Johnson A. D.. 1999; Phenotypic switching in Candida albicans is controlled by the SIR2 gene. EMBO J18:2580–2592[CrossRef]
    [Google Scholar]
  66. Porta A., Ramon A. M., Fonzi W. A.. 1999; PRR1, the homolog of Aspergillus nidulans palF, controls pH-dependent gene expression and filamentation in Candida albicans. J Bacteriol181:7516–7523
    [Google Scholar]
  67. Rademacher F., Kehren V., Stoldt V. R., Ernst J. F.. 1998; A Candida albicans chaperonin subunit (CaCct8p) as a suppressor of morphogenesis and Ras phenotypes in C. albicans and Saccharomyces cerevisiae. Microbiology144:2951–2960[CrossRef]
    [Google Scholar]
  68. Ramon A. M., Porta A., Fonzi W. A.. 1999; Effect of environmental pH on morphological development of Candida albicans is mediated via the PacC-related transcription factor encoded by PRR2. J Bacteriol181:7524–7530
    [Google Scholar]
  69. Riggle P. J., Andrutis K. A., Chen X., Tzipori S. R., Kumamoto C.. 1999; Invasive lesions containing filamentous forms produced by a Candida albicans mutant that is defective in filamentous growth in culture. Infect Immun67:3649–3652
    [Google Scholar]
  70. Ritz K., Crawford J. W.. 1999; Colony development in nutritionally heterogeneous environments. In The Fungal Colony pp.49–74Edited by Gow N. A. R., Robson G. D., Gadd G. M.. Cambridge: Cambridge University Press;
    [Google Scholar]
  71. Robertson L. S., Fink G. R.. 1998; The three A kinases have specific signalling functions in pseudohyphal growth. Proc Natl Acad Sci USA95:13783–13787[CrossRef]
    [Google Scholar]
  72. Rupp S., Summers E., Lo H.-J., Madhani H., Fink G.. 1999; MAP kinase and cAMP filamentation signalling pathways converge on the unusually large promoter of the yeast FLO11 gene. EMBO J18:1257–1269[CrossRef]
    [Google Scholar]
  73. Rustchenko E., Howard D. H., Sherman F.. 1994; Chromosomal alterations of Candida albicans are associated with the gain and loss of assimilating functions. J Bacteriol176:3231–3241
    [Google Scholar]
  74. Sabie F. T., Gadd G. M.. 1992; Effect of nucleosides and nucleotides and the relationship between cellular adenosine 3′:5′-cyclic monophosphate (cyclic AMP) and germ tube formation in Candida albicans. Mycopathologia119:147–156[CrossRef]
    [Google Scholar]
  75. Santos M. A., Perreau V. M., Tuite M. F.. 1996; Transfer RNA structural change is a key element in the reassignment of the CUG codon in Candida albicans. EMBO J15:5060–5068
    [Google Scholar]
  76. Scherer S., Magee P. T.. 1990; Genetics of Candida albicans. Microbiol Rev54:226–241
    [Google Scholar]
  77. Sherlock G., Bahman A. M., Mahal A., Shieh J. C., Ferreira M., Rosamond J.. 1994; Molecular cloning and analysis of CDC28 and cyclin homologues from the human fungal pathogen Candida albicans. Mol Gen Genet245:716–723[CrossRef]
    [Google Scholar]
  78. Soll D. R.. 1997; Gene regulation during high-frequency switching in Candida albicans. Microbiology143:279–288[CrossRef]
    [Google Scholar]
  79. Soll D. R., Morrow B., Srikantha T.. 1993; High-frequency phenotypic switching in Candida albicans. Trends Genet9:61–65[CrossRef]
    [Google Scholar]
  80. Sonneborn A., Tebarth B., Ernst J. F.. 1999a; Control of white-opaque phenotypic switching in Candida albicans by the Efg1p morphogenetic regulator. Infect Immun67:4655–4660
    [Google Scholar]
  81. Sonneborn A., Bockmühl D., Ernst J. F.. 1999b; Chlamydospore formation in Candida albicans requires the Efg1p morphogenetic regulator. Infect Immun67:5514–5517
    [Google Scholar]
  82. Sonneborn A., Bockmühl D. P., Gerads M., Kurpanek K., Sanglard S., Ernst J. F.. 2000; Protein kinase A encoded by TPK2 regulates dimorphism of Candida albicans. Mol Microbiol35:386–396[CrossRef]
    [Google Scholar]
  83. Srikantha T., Klapach A., Lorenz W. W., Tsai L. K, Laughlin L. A., Gorman J. A., Soll D. R.. 1996; The sea pansy Renilla reniformis luciferase serves as a sensitive bioluminescent reporter for differential gene expression in Candida albicans. J Bacteriol178:121–129
    [Google Scholar]
  84. Srikantha T., Tsai L. K., Daniels K., Soll D. R.. 2000; EFG1 null mutants of Candida albicans switch, but cannot express the complete phenotype of white-phase budding cells. J Bacteriol182:1580–1591[CrossRef]
    [Google Scholar]
  85. Staab J. F., Bradway S. D., Fidel P. L., Sundstrom P.. 1999; Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1p. Science283:1535–1538[CrossRef]
    [Google Scholar]
  86. Stoldt V. R., Sonneborn A., Leuker C., Ernst J. F.. 1997; Efg1, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. EMBO J16:1982–1991[CrossRef]
    [Google Scholar]
  87. Ward M. P., Gimeno C. J., Fink G. R., Garrett S.. 1995; SOK2 may regulate cyclic AMP-dependent protein kinase-stimulated growth and pseudohyphal development by repressing transcription. Mol Cell Biol15:6854–6863
    [Google Scholar]
  88. Wilson R. B., Davis D., Michell A. P.. 1999; Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions. J Bacteriol181:1868–1874
    [Google Scholar]
  89. Yamada-Okabe T., Mio T., Ono N., Kashima Y., Matsui M., Arisawa M., Yamada-Okabe Y.. 1999; Roles of three histidine kinase genes in hyphal development and virulence of the pathogenic fungus Candida albicans. J Bacteriol181:7243–7247
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-8-1763
Loading
/content/journal/micro/10.1099/00221287-146-8-1763
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error