1887
Preview this article:
Zoom in
Zoomout

Transcription factors in – environmental control of morphogenesis, Page 1 of 1

| /docserver/preview/fulltext/micro/146/8/1461763a-1.gif

There is no abstract available for this article.
Use the preview function to the left.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-8-1763
2000-08-01
2019-12-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/8/1461763a.html?itemId=/content/journal/micro/10.1099/00221287-146-8-1763&mimeType=html&fmt=ahah

References

  1. Alex, L. A., Korch, C., Selitrennikoff, C. P. & Simon, M. I. ( 1998; ). COS1, a two-component histidine kinase that is involved in hyphal development in the opportunistic pathogen Candida albicans. Proc Natl Acad Sci USA 95, 7069-7073.[CrossRef]
    [Google Scholar]
  2. Alonso-Monge, R., Navarro-Garcı́a, F., Molero, G., Diez-Orejas, R., Gustin, M., Pla, J., Sánchez, M. & Nombela, C. ( 1999; ). Role of the mitogen-activated protein kinase Hog1p in morphogenesis and virulence of Candida albicans. J Bacteriol 181, 3058-3068.
    [Google Scholar]
  3. Aramayo, R., Peleg, Y., Addison, R. & Metzenberg, R. ( 1996; ). Asm-1 +, a Neurospora crassa gene related to transcriptional regulators of fungal development. Genetics 144, 991-1003.
    [Google Scholar]
  4. Bailey, D. A., Feldmann, P. J. F., Bovey, M., Gow, N. A. R. & Brown, A. J. P. ( 1996; ). The Candida albicans HYR1 gene, which is activated in response to hyphal development, belongs to a gene family encoding yeast cell wall proteins. J Bacteriol 178, 5353-5360.
    [Google Scholar]
  5. Banuett, F. ( 1998; ). Signalling in yeasts: an informational cascade with links to the filamentous fungi. Microbiol Mol Biol Rev 62, 249-274.
    [Google Scholar]
  6. Bernards, R. ( 1995; ). Flipping the Myc switch. Curr Biol 5, 859-861.[CrossRef]
    [Google Scholar]
  7. Birse, C. E., Irwin, M. Y., Fonzi, W. A. & Sypherd, P. S. ( 1993; ). Cloning and characterization of ECE1, a gene expressed in association with cell elongation of the dimorphic pathogen Candida albicans. Infect Immun 61, 3648-3655.
    [Google Scholar]
  8. Braun, B. R. & Johnson, A. D. ( 1997; ). Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science 277, 105-109.[CrossRef]
    [Google Scholar]
  9. Braun, B. R. & Johnson, A. D. ( 2000; ). TUP1, CPH1 and EFG1 make independent contributions to filamentation in Candida albicans. Genetics 155, 57-67.
    [Google Scholar]
  10. Brown, D. H.Jr, Giusani, A. D., Chen, X. & Kumamoto, C. ( 1999; ). Filamentous growth of Candida albicans in response to physical environmental cues and its regulation by the unique CZF1 gene. Mol Microbiol 34, 651-662.[CrossRef]
    [Google Scholar]
  11. Buffo, J., Herman, M. A. & Soll, D. R. ( 1984; ). A characterization of pH-regulated dimorphism in Candida albicans. Mycopathologia 85, 21-30.[CrossRef]
    [Google Scholar]
  12. Calera, J. A. & Calderone, R. ( 1999; ). Flocculation of hyphae is associated with a deletion in the putative CaHK1 two-component histidine kinase gene from Candida albicans. Microbiology 145, 1431-1442.[CrossRef]
    [Google Scholar]
  13. Calera, J. A., Zhao, X. J. & Calderone, R. ( 2000; ). Defective hyphal development and avirulence caused by a deletion of the SSK1 response regulator gene in Candida albicans. Infect Immun 68, 518-525.[CrossRef]
    [Google Scholar]
  14. Chaffin, W. L. ( 1984; ). Site selection for bud and germ tube emergence in Candida albicans. J Gen Microbiol 130, 431-440.
    [Google Scholar]
  15. Chant, J. ( 1994; ). Cell polarity in yeast. Trends Genet 10, 328-333.[CrossRef]
    [Google Scholar]
  16. Cormack, B. P., Bertram, G., Egerton, M., Gow, N. A. R., Falkow, S. & Brown, A. J. P. ( 1997; ). Yeast-enhanced green fluorescent protein (yEGFP): a reporter of gene expression in Candida albicans. Microbiology 143, 303-311.[CrossRef]
    [Google Scholar]
  17. Csank, C., Makris, C., Meloche, S., Schröppel, K., Röllinghoff, M., Dignard, D., Thomas, D. Y. & Whiteway, M. ( 1997; ). Derepressed hyphal growth and reduced virulence in a VH1 family-related protein phosphatase mutant of the human pathogen Candida albicans. Mol Biol Cell 8, 2539-2551.[CrossRef]
    [Google Scholar]
  18. Csank, C., Schröppel, K., Leberer, E., Harcus, D., Mohamed, O., Meloche, S., Thomas, D. Y. & Whiteway, M. ( 1998; ). Roles of the Candida albicans mitogen-activated protein kinase homolog, Cek1p, in hyphal development and systemic candidiasis. Infect Immun 66, 2713-2721.
    [Google Scholar]
  19. Delbrück, S. & Ernst, J. F. ( 1993; ). Morphogenesis-independent regulation of actin transcript levels in the pathogenic yeast Candida albicans. Mol Microbiol 10, 859-866.[CrossRef]
    [Google Scholar]
  20. Delbrück, S., Sonneborn, A., Gerads, M., Grablowitz, A. H. & Ernst, J. F. ( 1997; ). Characterization and regulation of the genes encoding ribosomal proteins L39 and S7 of the human pathogen Candida albicans. Yeast 13, 1199-1210.[CrossRef]
    [Google Scholar]
  21. Drazinic, C. M., Smerage, J. B., Lopez, M. C. & Baker, H. ( 1996; ). Activation mechanism of the multifunctional transcription factor repressor-activator protein 1. Mol Cell Biol 16, 3187-3196.
    [Google Scholar]
  22. Dutton, J. R., Johns, S. & Miller, B. L. ( 1997; ). StuAp is a sequence-specific transcription factor that regulates developmental complexity in Aspergillus nidulans. EMBO J 16, 5710-5721.[CrossRef]
    [Google Scholar]
  23. Ernst, J. F. ( 2000; ). Regulation of dimorphism in Candida albicans. In Contributions to Microbiology, vol. 5, Dimorphism in Human Pathogenic and Apathogenic Yeasts, pp. 98-111. Edited by J. F. Ernst & A. Schmidt. Basel: Karger.
  24. Facchini, L. M., Chen, S., Marhin, W. W., Lear, J. N. & Penn, L. Z. ( 1997; ). The Myc negative autoregulation mechanism requires Myc–Max association and involves the c-myc P2 minimal promoter. Mol Cell Biol 17, 100-114.
    [Google Scholar]
  25. Feng, Q., Summers, E., Guo, B. & Fink, G. ( 1999; ). Ras signalling is required for serum-induced hyphal differentiation in Candida albicans. J Bacteriol 181, 6339-6346.
    [Google Scholar]
  26. Fonzi, W. A. ( 1999; ). PHR1 and PHR2 of Candida albicans encode putative glycosidases required for proper cross-linking of β-1,3- and β-1,6-glucans. J Bacteriol 181, 7070-7079.
    [Google Scholar]
  27. Fonzi, W. A. & Irwin, M. Y. ( 1993; ). Isogenic strain construction and gene mapping in Candida albicans. Genetics 134, 717-728.
    [Google Scholar]
  28. Gimeno, C. J. & Fink, G. R. ( 1994; ). Induction of pseudohyphal growth by overexpression of PHD1, a Saccharomyces cerevisiae gene related to transcriptional regulators of fungal development. Mol Cell Biol 14, 2100-2112.
    [Google Scholar]
  29. Gimeno, C. J., Ljungdahl, P. O., Styles, C. A. & Fink, G. R. ( 1992; ). Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell 68, 1077-1090.[CrossRef]
    [Google Scholar]
  30. Gow, N. A. R., Robbins, P. W., Leister, J. W., Brown, A. J. P., Fonzi, W. A., Chapman, T. & Kinsman, O. S. ( 1994; ). A hyphal-specific chitin synthase gene (CHS2) is not essential for growth, dimorphism, or virulence of Candida albicans. Proc Natl Acad Sci USA 91, 6216-6220.[CrossRef]
    [Google Scholar]
  31. Hawser, S., Francolini, M. & Islam, K. ( 1996; ). The effects of antifungal agents on the morphogenetic transformation by Candida albicans in vitro. J Antimicrob Chemother 38, 579-587.[CrossRef]
    [Google Scholar]
  32. Hoyer, L. L., Payne, T. L., Bell, M., Myers, A. M. & Scherer, S. ( 1998; ). Candida albicans ALS3 and insights into the nature of the ALS gene family. Curr Genet 33, 451-459.[CrossRef]
    [Google Scholar]
  33. Hube, B. ( 1996; ). Candida albicans secreted aspartyl proteinases. Curr Top Med Mycol 7, 55-69.
    [Google Scholar]
  34. Hull, C. M. & Johnson, A. D. ( 1999; ). Identification of a mating type-like locus in the asexual pathogenic yeast Candida albicans. Science 285, 1271-1275.[CrossRef]
    [Google Scholar]
  35. Ishii, N., Yamamoto, M., Yoshihara, F., Arisawa, M. & Aoki, Y. ( 1997; ). Biochemical and genetic characterization of Rbf1p, a putative transcription factor of Candida albicans. Microbiology 143, 429-435.[CrossRef]
    [Google Scholar]
  36. Janbon, G., Sherman, F. & Rustchenko, E. ( 1999; ). Appearance and properties of l-sorbose-utilizing mutants of Candida albicans obtained on a selective plate. Genetics 153, 653-664.
    [Google Scholar]
  37. Joshi, K. R., Solanki, A. & Prakash, P. ( 1993; ). Morphological identification of Candida species on glucose agar, rice extract agar and corn meal agar with and without Tween-80. Indian J Pathol Microbiol 36, 48-52.
    [Google Scholar]
  38. Kalo-Klein, A. & Witkin, S. S. ( 1990; ). Prostaglandin E2 enhances and gamma interferon inhibits germ tube formation in Candida albicans. Infect Immun 58, 260-262.
    [Google Scholar]
  39. Keleher, C. A., Redd, M. J., Schultz, J., Carlson, M. & Johnson, A. D. ( 1992; ). Ssn6-Tup1 is a general repressor of transcription in yeast. Cell 68, 709-719.[CrossRef]
    [Google Scholar]
  40. Köhler, J. R. & Fink, G. R. ( 1996; ). Candida albicans strains heterozygous and homozygous in mitogen-activated protein kinase signalling components have defects in hyphal development. Proc Natl Acad Sci USA 93, 13223-13228.[CrossRef]
    [Google Scholar]
  41. Komachi, K. & Johnson, A. D. ( 1997; ). Residues in the WD repeats of Tup1 required for interaction with alpha2. Mol Cell Biol 17, 6023-6028.
    [Google Scholar]
  42. Leberer, E., Harcus, D., Broadbent, I. D. & 7 other authors ( 1996; ). Signal transduction through homologs of the Ste20p and Ste7p protein kinases can trigger hyphal formation in the pathogenic fungus Candida albicans. Proc Natl Acad Sci USA 93, 13217–13222.[CrossRef]
    [Google Scholar]
  43. Leng, P., Sudbery, P. E. & Brown, A. J. P. ( 2000; ). Rad6p represses yeast–hypha morphogenesis in the human fungal pathogen, Candida albicans. Mol Microbiol 35, 1264-1275.[CrossRef]
    [Google Scholar]
  44. Leuker, C. E., Hahn, A.-M. & Ernst, J. F. ( 1992; ). β-Galactosidase of Kluyveromyces lactis (Lac4p) as reporter of gene expression in Candida albicans and C. tropicalis. Mol Gen Genet 235, 235-241.[CrossRef]
    [Google Scholar]
  45. Levitz, S. M. & North, E. A. ( 1996; ). Gamma interferon gene expression and release in human lymphocytes directly activated by Cryptococcus neoformans and Candida albicans. Infect Immun 64, 1595-1599.
    [Google Scholar]
  46. Liu, H., Styles, C. A. & Fink, G. R. ( 1993; ). Elements of the yeast pheromone response pathway required for filamentous growth of diploids. Science 262, 1741-1744.[CrossRef]
    [Google Scholar]
  47. Liu, H., Köhler, J. & Fink, G. R. ( 1994; ). Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science 266, 1723-1725.[CrossRef]
    [Google Scholar]
  48. Lo, H.-J., Köhler, J. R., Didomenico, B., Loebenberg, D., Cacciapuoti, A. & Fink, G. R. ( 1997; ). Nonfilamentous C. albicans mutants are avirulent. Cell 90, 939-949.[CrossRef]
    [Google Scholar]
  49. Loeb, J. D. J., Sepulveda-Becerra, M., Hazan, I. & Liu, H. ( 1999; ). A G1 cyclin is necessary for maintenance of filamentous growth in Candida albicans. Mol Cell Biol 19, 4019-4027.
    [Google Scholar]
  50. Madhani, H. D. & Fink, G. R. ( 1997; ). Combinatorial control required for the specificity of yeast MAPK signalling. Science 275, 1314-1317.[CrossRef]
    [Google Scholar]
  51. Martinez, J. P., Lopez-Ribot, J. L., Gil, M. L., Sentandreu, R. & Ruiz-Herrera, J. ( 1990; ). Inhibition of the dimorphic transition of Candida albicans by the ornithine decarboxylase inhibitor 1,4-diaminobutanone: alterations in the glycoprotein composition of the cell wall. J Gen Microbiol 136, 1937-1943.[CrossRef]
    [Google Scholar]
  52. Miller, K. Y., Wu, J. & Miller, B. L. ( 1992; ). StuA is required for cell pattern formation in Aspergillus. Genes Dev 6, 1770-1782.[CrossRef]
    [Google Scholar]
  53. Mösch, H.-U., Roberts, R. L. & Fink, G. R. ( 1996; ). Ras2 signals via the Cdc42/Ste20/mitogen-activated protein kinase module to induce filamentous growth in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 93, 5352-5356.[CrossRef]
    [Google Scholar]
  54. Montazeri, M. & Hedrick, H. G. ( 1984; ). Factors affecting spore formation in a Candida albicans strain. Appl Environ Microbiol 47, 1341-1342.
    [Google Scholar]
  55. Morschhäuser, J., Michel, S. & Staib, P. ( 1999; ). Sequential gene disruption in Candida albicans by FLP-mediated site-specific recombination. Mol Microbiol 32, 547-556.[CrossRef]
    [Google Scholar]
  56. Nagahashi, S., Mio, T., Ono, N., Yamada-Okabe, T., Arisawa, M., Bussey, H. & Yamada-Okabe, H. ( 1998; ). Isolation of CaSLN1 and CaNIK1, the genes for osmosensing histidine kinase homologues, from the pathogenic fungus Candida albicans. Microbiology 144, 425-432.[CrossRef]
    [Google Scholar]
  57. Navarro-Garcı́a, F., Sánchez, M., Pla, J. & Nombela, C. ( 1995; ). Functional characterization of the MKC1 gene of Candida albicans, which encodes a mitogen-activated protein kinase homolog related to cell integrity. Mol Cell Biol 15, 2197-2206.
    [Google Scholar]
  58. Navarro-Garcı́a, F., Alonso-Monge, R., Rico, H., Pla, J., Sentandreu, R. & Nombela, C. ( 1998; ). A role for the MAP kinase gene MKC1 in cell wall construction and morphological transitions in Candida albicans. Microbiology 144, 411-424.[CrossRef]
    [Google Scholar]
  59. Niimi, M. ( 1996; ). Dibutyryl cyclic AMP-enhanced germ tube formation in exponentially growing Candida albicans cells. Fungal Genet Biol 20, 79-83.[CrossRef]
    [Google Scholar]
  60. Niimi, M., Niimi, K., Tokunaga, J. & Nakayama, H. ( 1980; ). Changes in cyclic nucleotide levels and dimorphic transition in Candida albicans. J Bacteriol 142, 1010-1014.
    [Google Scholar]
  61. Odds, F. C. (1988). Candida and Candidosis, 2nd edn. London: Baillière Tindall.
  62. O’Rourke, S. M. & Herskowitz, I. ( 1998; ). The Hog1 MAPK prevents cross talk between the HOG and pheromone response MAPK pathways in Saccharomyces cerevisiae. Genes Dev 12, 2874-2886.[CrossRef]
    [Google Scholar]
  63. Pan, X. & Heitman, J. ( 1999; ). Cyclic AMP-dependent protein kinase regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Mol Cell Biol 19, 4874-4887.
    [Google Scholar]
  64. Paravicini, G., Menoza, A., Antonsson, B., Cooper, M., Losberger, C. & Payton, M. A. ( 1996; ). The Candida albicans PCK1 gene encodes a protein kinase C homolog necessary for cellular integrity but not dimorphism. Yeast 12, 741-756.[CrossRef]
    [Google Scholar]
  65. Perez-Martin, J., Uria, J. A. & Johnson, A. D. ( 1999; ). Phenotypic switching in Candida albicans is controlled by the SIR2 gene. EMBO J 18, 2580-2592.[CrossRef]
    [Google Scholar]
  66. Porta, A., Ramon, A. M. & Fonzi, W. A. ( 1999; ). PRR1, the homolog of Aspergillus nidulans palF, controls pH-dependent gene expression and filamentation in Candida albicans. J Bacteriol 181, 7516-7523.
    [Google Scholar]
  67. Rademacher, F., Kehren, V., Stoldt, V. R. & Ernst, J. F. ( 1998; ). A Candida albicans chaperonin subunit (CaCct8p) as a suppressor of morphogenesis and Ras phenotypes in C. albicans and Saccharomyces cerevisiae. Microbiology 144, 2951-2960.[CrossRef]
    [Google Scholar]
  68. Ramon, A. M., Porta, A. & Fonzi, W. A. ( 1999; ). Effect of environmental pH on morphological development of Candida albicans is mediated via the PacC-related transcription factor encoded by PRR2. J Bacteriol 181, 7524-7530.
    [Google Scholar]
  69. Riggle, P. J., Andrutis, K. A., Chen, X., Tzipori, S. R. & Kumamoto, C. ( 1999; ). Invasive lesions containing filamentous forms produced by a Candida albicans mutant that is defective in filamentous growth in culture. Infect Immun 67, 3649-3652.
    [Google Scholar]
  70. Ritz, K. & Crawford, J. W. ( 1999; ). Colony development in nutritionally heterogeneous environments. In The Fungal Colony, pp. 49-74. Edited by N. A. R. Gow, G. D. Robson & G. M. Gadd. Cambridge: Cambridge University Press.
  71. Robertson, L. S. & Fink, G. R. ( 1998; ). The three A kinases have specific signalling functions in pseudohyphal growth. Proc Natl Acad Sci USA 95, 13783-13787.[CrossRef]
    [Google Scholar]
  72. Rupp, S., Summers, E., Lo, H.-J., Madhani, H. & Fink, G. ( 1999; ). MAP kinase and cAMP filamentation signalling pathways converge on the unusually large promoter of the yeast FLO11 gene. EMBO J 18, 1257-1269.[CrossRef]
    [Google Scholar]
  73. Rustchenko, E., Howard, D. H. & Sherman, F. ( 1994; ). Chromosomal alterations of Candida albicans are associated with the gain and loss of assimilating functions. J Bacteriol 176, 3231-3241.
    [Google Scholar]
  74. Sabie, F. T. & Gadd, G. M. ( 1992; ). Effect of nucleosides and nucleotides and the relationship between cellular adenosine 3′:5′-cyclic monophosphate (cyclic AMP) and germ tube formation in Candida albicans. Mycopathologia 119, 147-156.[CrossRef]
    [Google Scholar]
  75. Santos, M. A., Perreau, V. M. & Tuite, M. F. ( 1996; ). Transfer RNA structural change is a key element in the reassignment of the CUG codon in Candida albicans. EMBO J 15, 5060-5068.
    [Google Scholar]
  76. Scherer, S. & Magee, P. T. ( 1990; ). Genetics of Candida albicans. Microbiol Rev 54, 226-241.
    [Google Scholar]
  77. Sherlock, G., Bahman, A. M., Mahal, A., Shieh, J. C., Ferreira, M. & Rosamond, J. ( 1994; ). Molecular cloning and analysis of CDC28 and cyclin homologues from the human fungal pathogen Candida albicans. Mol Gen Genet 245, 716-723.[CrossRef]
    [Google Scholar]
  78. Soll, D. R. ( 1997; ). Gene regulation during high-frequency switching in Candida albicans. Microbiology 143, 279-288.[CrossRef]
    [Google Scholar]
  79. Soll, D. R., Morrow, B. & Srikantha, T. ( 1993; ). High-frequency phenotypic switching in Candida albicans. Trends Genet 9, 61-65.[CrossRef]
    [Google Scholar]
  80. Sonneborn, A., Tebarth, B. & Ernst, J. F. ( 1999a; ). Control of white-opaque phenotypic switching in Candida albicans by the Efg1p morphogenetic regulator. Infect Immun 67, 4655-4660.
    [Google Scholar]
  81. Sonneborn, A., Bockmühl, D. & Ernst, J. F. ( 1999b; ). Chlamydospore formation in Candida albicans requires the Efg1p morphogenetic regulator. Infect Immun 67, 5514-5517.
    [Google Scholar]
  82. Sonneborn, A., Bockmühl, D. P., Gerads, M., Kurpanek, K., Sanglard, S. & Ernst, J. F. ( 2000; ). Protein kinase A encoded by TPK2 regulates dimorphism of Candida albicans. Mol Microbiol 35, 386-396.[CrossRef]
    [Google Scholar]
  83. Srikantha, T., Klapach, A., Lorenz, W. W., Tsai, L. K, Laughlin, L. A., Gorman, J. A. & Soll, D. R. ( 1996; ). The sea pansy Renilla reniformis luciferase serves as a sensitive bioluminescent reporter for differential gene expression in Candida albicans. J Bacteriol 178, 121-129.
    [Google Scholar]
  84. Srikantha, T., Tsai, L. K., Daniels, K. & Soll, D. R. ( 2000; ). EFG1 null mutants of Candida albicans switch, but cannot express the complete phenotype of white-phase budding cells. J Bacteriol 182, 1580-1591.[CrossRef]
    [Google Scholar]
  85. Staab, J. F., Bradway, S. D., Fidel, P. L. & Sundstrom, P. ( 1999; ). Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1p. Science 283, 1535-1538.[CrossRef]
    [Google Scholar]
  86. Stoldt, V. R., Sonneborn, A., Leuker, C. & Ernst, J. F. ( 1997; ). Efg1, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. EMBO J 16, 1982-1991.[CrossRef]
    [Google Scholar]
  87. Ward, M. P., Gimeno, C. J., Fink, G. R. & Garrett, S. ( 1995; ). SOK2 may regulate cyclic AMP-dependent protein kinase-stimulated growth and pseudohyphal development by repressing transcription. Mol Cell Biol 15, 6854-6863.
    [Google Scholar]
  88. Wilson, R. B., Davis, D. & Michell, A. P. ( 1999; ). Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions. J Bacteriol 181, 1868-1874.
    [Google Scholar]
  89. Yamada-Okabe, T., Mio, T., Ono, N., Kashima, Y., Matsui, M., Arisawa, M. & Yamada-Okabe, Y. ( 1999; ). Roles of three histidine kinase genes in hyphal development and virulence of the pathogenic fungus Candida albicans. J Bacteriol 181, 7243-7247.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-8-1763
Loading
/content/journal/micro/10.1099/00221287-146-8-1763
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error