1887

Abstract

The analysis of spontaneous bacteriocin-negative mutants has led to the identification and characterization of a new, transpositionally active, insertion sequence of the IS family in the lactocin-S-producing strain L45. The element, which has been designated IS, is 1302 bp long with 10 bp perfect inverted repeat ends and generates direct repeats of a trinucleotide of target sequence upon transposition to the lactocin S locus. IS encodes two consecutive, partially overlapping, major ORFs, which are frameshifted in a manner typical of the IS family. Despite a low overall DNA sequence similarity, the putative frameshifting region of IS is highly similar to the corresponding region of IS, which is a related element previously shown to be active in L45.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-5-1163
2000-05-01
2020-09-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/5/1461163a.html?itemId=/content/journal/micro/10.1099/00221287-146-5-1163&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. 1990; Basic local alignment search tool. J Mol Biol215:403–410[CrossRef]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402[CrossRef]
    [Google Scholar]
  3. Atkins J. F., Weiss R. B., Gesteland R. F.. 1990; Ribosome gymnastics – degree of difficulty 9·5, style 10·0. Cell62:413–423[CrossRef]
    [Google Scholar]
  4. Birnboim H. C., Doly J.. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res7:1513–1523[CrossRef]
    [Google Scholar]
  5. Chandler M., Fayet O.. 1993; Translational frameshifting in the control of transposition in bacteria. Mol Microbiol7:497–503[CrossRef]
    [Google Scholar]
  6. Church G. M., Gilbert W.. 1984; Genomic sequencing. Proc Natl Acad Sci USA81:1991–1995[CrossRef]
    [Google Scholar]
  7. Craig N. L.. 1997; Target site selection in transposition. Annu Rev Biochem66:437–474[CrossRef]
    [Google Scholar]
  8. Doak T. G., Doerder F. P., Jahn C. L., Herrick G.. 1994; A proposed superfamily of transposase genes: transposon-like elements in ciliated protozoa and a common ‘‘D35E’’ motif. Proc Natl Acad Sci USA91:942–946[CrossRef]
    [Google Scholar]
  9. Dower W. J., Miller J. F., Ragsdale C. W.. 1988; High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res16:6127–6145[CrossRef]
    [Google Scholar]
  10. Fayet O., Ramond P., Polard P., Prére M. F., Chandler M.. 1990; Functional similarities between retroviruses and the IS3 family of bacterial insertion sequences?. Mol Microbiol4:1771–1777[CrossRef]
    [Google Scholar]
  11. Haren L., Polard P., Ton-Hoang B., Chandler M.. 1998; Multiple oligomerisation domains in the IS911 transposase: a leucine zipper motif is essential for activity. J Mol Biol283:29–41[CrossRef]
    [Google Scholar]
  12. Hu S. T., Lee L. C., Lei G. S.. 1996; Detection of an IS2-encoded 46-kilodalton protein capable of binding terminal repeats of IS2. J Bacteriol178:5652–5659
    [Google Scholar]
  13. Jacks T., Madhani H. D., Masiarz F. R., Varmus H. E.. 1988; Signals for ribosomal frameshifting in the Rous sarcoma virus gag-pol region. Cell55:447–458[CrossRef]
    [Google Scholar]
  14. Kandler O., Weiss N.. 1986; Regular, nonsporing Gram-positive rods. In Bergey’s Manual of Systematic Bacteriology pp.1208–1260Edited by Sneath P. A., Mair N. S., Sharpe M. E., Holt J. G.. Baltimore: Williams & Wilkins;
    [Google Scholar]
  15. Lei G. S., Hu S. T.. 1997; Functional domains of the InsA protein of IS2. J Bacteriol179:6238–6243
    [Google Scholar]
  16. Mahillon J., Chandler M.. 1998; Insertion sequences. Microbiol Mol Biol Rev62:725
    [Google Scholar]
  17. Mørtvedt C. I., Nes I. F.. 1990; Plasmid-associated bacteriocin production by a Lactobacillus sake strain. J Gen Microbiol136:1601–1607[CrossRef]
    [Google Scholar]
  18. Mørtvedt C. I., Nissen-Meyer J., Sletten K., Nes I. F.. 1991; Purification and amino acid sequence of lactocin S, a bacteriocin produced by Lactobacillus sake L45. Appl Environ Microbiol57:1829–1834
    [Google Scholar]
  19. Polard P., Prére M. F., Chandler M., Fayet O.. 1991; Programmed translational frameshifting and initiation at an AUU codon in gene expression of bacterial insertion sequence IS911. J Mol Biol222:465–477[CrossRef]
    [Google Scholar]
  20. Polard P., Prére M. F., Fayet O., Chandler M.. 1992; Transposase-induced excision and circularization of the bacterial insertion sequence IS911. EMBO J11:5079–5090
    [Google Scholar]
  21. Rettberg C. C., Prére M. F., Gesteland R. F., Atkins J. F., Fayet O.. 1999; A three-way junction and constituent stem-loops as the stimulator for programmed −1 frameshifting in bacterial insertion sequence IS911. J Mol Biol286:1365–1378[CrossRef]
    [Google Scholar]
  22. Schnell N., Entian K.-D., Schneider U., Götz F., Zähner H., Kellner R., Jung G.. 1988; Prepeptide sequence of epidermin, a ribosomally synthesized antibiotic with four sulphide-rings. Nature333:276–278[CrossRef]
    [Google Scholar]
  23. Sekine Y., Eisaki N., Ohtsubo E.. 1994; Translational control in production of transposase and in transposition of insertion sequence IS3. J Mol Biol235:1406–1420[CrossRef]
    [Google Scholar]
  24. Shimizu-Kadota M., Kiwaki M., Hirokawa H., Tsuchida N.. 1985; ISL1: a new transposable element in Lactobacillus casei. Mol Gen Genet200:193–198[CrossRef]
    [Google Scholar]
  25. Skaugen M., Nes I. F.. 1994; Transposition in Lactobacillus sake and its abolition of lactocin S production by insertion of IS1163, a new member of the IS3 family. Appl Environ Microbiol60:2818–2825
    [Google Scholar]
  26. Skaugen M., Nissen-Meyer J., Jung G., Stefanovic S., Sletten K., Abildgaard C. I. M., Nes I. F.. 1994; In vivo conversion of l-serine to d-alanine in a ribosomally synthesized polypeptide. J Biol Chem269:27183–27185
    [Google Scholar]
  27. Skaugen M., Abildgaard C. I. M., Nes I. F.. 1997; Organization and expression of a gene cluster involved in the biosynthesis of the lantibiotic lactocin S. Mol Gen Genet253:674–686[CrossRef]
    [Google Scholar]
  28. Sulavik M. C., Clewell D. B.. 1996; Rgg is a positive transcriptional regulator of the Streptococcus gordonii gtfG gene. J Bacteriol178:5826–5830
    [Google Scholar]
  29. Sulavik M. C., Tardif G., Clewell D. B.. 1992; Identification of a gene, rgg, which regulates expression of glucosyltransferase and influences the Spp phenotype of Streptococcus gordonii challis. J Bacteriol174:3577–3586
    [Google Scholar]
  30. Ton-Hoang B., Betermier M., Polard P., Chandler M.. 1997; Assembly of a strong promoter following IS911 circularization and the role of circles in transposition. EMBO J16:3357–3371[CrossRef]
    [Google Scholar]
  31. Ton-Hoang B., Polard P., Chandler M.. 1998; Efficient transposition of IS911 circles in vitro. EMBO J17:1169–1181[CrossRef]
    [Google Scholar]
  32. Vögele K., Schwartz E., Welz C., Schiltz E., Rak B.. 1991; High-level ribosomal frameshifting directs the synthesis of IS150 gene products. Nucleic Acids Res19:4377–4385[CrossRef]
    [Google Scholar]
  33. Walker D. C., Klaenhammer T. R.. 1994; Isolation of a novel IS3 group insertion element and construction of an integration vector for Lactobacillus spp. J Bacteriol176:5330–5340
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-5-1163
Loading
/content/journal/micro/10.1099/00221287-146-5-1163
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error