1887

Abstract

Biomarkers (respiratory quinones and cellular fatty acids) and denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA genes were used to characterize the microbial community structure of lab-scale enhanced biological phosphate-removal (EBPR) systems in response to altering sludge phosphorus (P) content. All the data suggest that the microbial community structures of sludge samples with a P content between 8 and 12·3% (sludge dry weight) (i.e. good EBPR activity) were very similar, but differed from those with 2% P content (i.e. no EBPR activity). For all samples analysed, ubiquinones Q-8 and Q-10, menaquinone MK-8(H), and fatty acids C, C and C were the major components. The dominance of Q-8, Q-10 and MK-8(H) suggested that large numbers of organisms belonging to the β and α subclasses of the and the from the high G+C Gram-positive bacteria, respectively, were present. DGGE analysis revealed at least 7–9 predominant DNA bands and numerous other fragments in each sample. Five major DGGE fragments from each of the 2% and 12% P-containing sludge samples, respectively, were successfully isolated and sequenced. Phylogenetic analysis of the sequences indicated that both 2% and 12% P-containing sludge samples shared three common phylotypes that were separately affiliated with a novel bacterial group from the γ subclass of the , two MK-8(H)-containing actinobacteria previously isolated from the 2% P-containing sludge, and a spp. in the α subclass of the . The phylogenetic analysis also revealed phylotypes unique to both sludge samples. Changes in sludge P content therefore had an effect on the composition and abundance of the predominant microbial populations, though specific phylotypes could not be unequivocally associated with EBPR.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-5-1099
2000-05-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/5/1461099a.html?itemId=/content/journal/micro/10.1099/00221287-146-5-1099&mimeType=html&fmt=ahah

References

  1. Bond, P., Hugenholtz, P., Keller, J. & Blackall, L. ( 1995; ). Bacterial community structures of phosphate-removing and non-phosphate-removing activated sludge from sequencing batch reactors. Appl Environ Microbiol 61, 1910-1916.
    [Google Scholar]
  2. Bond, P., Erhart, E., Wagner, M., Keller, J. & Blackall, L. ( 1999; ). Identification of some of the major groups of bacteria in efficient and nonefficient biological phosphorus removal activated sludge systems. Appl Environ Microbiol 65, 4077-4084.
    [Google Scholar]
  3. Cech, J. S. & Hartman, P. ( 1993; ). Competition between polyphosphate and polysaccharide accumulating bacteria in enhanced biological phosphate removal system. Water Res 27, 1219-1225.[CrossRef]
    [Google Scholar]
  4. Collins, M. D. & Jones, D. ( 1981; ). Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol Rev 45, 316-354.
    [Google Scholar]
  5. Comeau, Y., Hall, K. J., Hancock, R. E. W. & Oldham, W. K. ( 1986; ). Biochemical model for enhanced biological phosphorus removal. Water Res 20, 1511-1521.[CrossRef]
    [Google Scholar]
  6. Dawes, E. A. & Senior, P. J. ( 1973; ). Energy reserve polymers in microorganisms. Adv Microbiol Physiol 10, 135-266.
    [Google Scholar]
  7. Felsenstein, J. ( 1985; ). Confidence limits of phylogenies: an approach using the bootstrap. Evolution 39, 783-791.[CrossRef]
    [Google Scholar]
  8. Felske, A., Wolterink, A., Van Lis, R. & Akkermans, A. D. ( 1998; ). Phylogeny of the main bacterial 16S rRNA sequences in Drentse A grassland soils (The Netherlands). Appl Environ Microbiol 64, 871-879.
    [Google Scholar]
  9. Ferris, M. J., Muyzer, G. & Ward, D. M. ( 1996; ). Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl Environ Microbiol 62, 340-346.
    [Google Scholar]
  10. Fuhs, G. W. & Chen, M. ( 1975; ). Microbiological basis of phosphate removal in the activated sludge process for the treatment of wastewater. Microb Ecol 22, 119-138.
    [Google Scholar]
  11. Haack, S. K., Garchow, H., Odelson, D., Forney, L. J. & Klug, M. J. ( 1994; ). Accuracy, reproducibility, and interpretation of fatty acid methyl ester profiles of model bacterial communities. Appl Environ Microbiol 60, 2483-2493.
    [Google Scholar]
  12. Heuer, H., Krsek, M., Baker, P., Smalla, K. & Wellington, E. M. ( 1997; ). Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl Environ Microbiol 63, 3233-3241.
    [Google Scholar]
  13. Hiraishi, A., Masamune, K. & Kitamura, H. ( 1989; ). Characterization of the bacterial population structure in an anaerobic-aerobic activated sludge system on the basis of respiratory quinone profiles. Appl Environ Microbiol 55, 897-901.
    [Google Scholar]
  14. Hiraishi, A., Ueda, Y. & Ishihara, J. ( 1998; ). Quinone profiling of bacterial communities in natural and synthetic sewage activated sludge for enhanced phosphate removal. Appl Environ Microbiol 64, 992-998.
    [Google Scholar]
  15. Jenkins, D. & Tandoi, V. ( 1991; ). The applied microbiology of enhanced biological phosphate removal – accomplishments and needs. Water Res 25, 1471-1478.[CrossRef]
    [Google Scholar]
  16. Kämpfer, P., Erhart, R., Beimfohr, C., Böhringer, J., Wagner, M. & Amann, R. ( 1996; ). Characterization of bacterial communities from activated sludge: culture dependent numerical identification versus in situ identification using group- and genus-specific rRNA-targeted oligonucleotide probes. Microb Ecol 322, 101-121.
    [Google Scholar]
  17. Kuba, T., Smolders, G., van Loosdrecht, M. C. M. & Heijnen, J. J. ( 1993; ). Biological phosphorus removal from wastewater by anaerobic-anoxic sequencing batch reactor. Water Sci Technol 27, 241-252.
    [Google Scholar]
  18. Kumar, S., Tamura, K. & Nei, M. (1993). mega: molecular evolutionary genetics analysis, version 1.0. University Park, PA: Pennsylvania State University.
  19. Lee, N., Nielsen, P. H., Andreasen, K. H., Juretschko, S., Nielsen, J. L., Schleifer, K.-H. & Wagner, M. ( 1999; ). Combination of fluorescent in situ hybridization and microsutoradiography – new tool for structure-function analyses in microbial ecology. Appl Environ Microbiol 65, 1289-1297.
    [Google Scholar]
  20. Liu, W.-T. (1995). Function, dynamics, and diversity of microbial population in anaerobic aerobic activated sludge processes for biological phosphate removal. PhD thesis, University of Tokyo.
  21. Liu, W.-T., Mino, T., Nakamura, K. & Matsuo, T. ( 1994; ). Role of glycogen in acetate uptake and polyhydroxyalkanoate synthesis in anaerobic–aerobic activated sludge with a minimized polyphosphate content. J Ferment Biotechnol 77, 535-540.[CrossRef]
    [Google Scholar]
  22. Liu, W.-T., Mino, T., Matsuo, T. & Nakamura, K. ( 1996; ). Glycogen accumulating population and its anaerobic substrate uptake in anaerobic–aerobic activated sludge without biological phosphate removal. Water Res 30, 75-82.[CrossRef]
    [Google Scholar]
  23. Liu, W.-T., Nakamura, K., Matsuo, T. & Mino, T. ( 1997a; ). Internal energy-based competition between polyphosphate- and glycogen-accumulating bacteria in biological phosphorus removal reactor – effect of the P/C feeding ratio. Water Res 31, 1430-1438.[CrossRef]
    [Google Scholar]
  24. Liu, W.-T., Marsh, T. L., Chen, H. & Forney, L. J. ( 1997b; ). Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of gene encoding 16S rRNA. Appl Environ Microbiol 63, 4516-4522.
    [Google Scholar]
  25. MacRae, J. D. & Smit, J. ( 1991; ). Characterization of caulobacters isolated from wastewater treatment systems. Appl Environ Microbiol 573, 751-758.
    [Google Scholar]
  26. Marais, G. v. R., Lowenthal, R. E. & Siebritz, I. P. ( 1983; ). Observations supporting phosphate removal by biological excess uptake – a review. Water Sci Technol 15, 15-42.
    [Google Scholar]
  27. Mino, T., Arun, V., Tsuzuki, Y. & Matsuo, T. ( 1987; ). Effect of phosphorus accumulation on acetate metabolism in the biological phosphorus removal process. In Advances in Water Pollution Control: Biological Phosphate Removal from Wastewaters, pp. 27-38. Edited by R. Ramadori. Oxford: Pergamon Press.
  28. Mino, T., van Loosdrecht, M. C. M. & Heijnen, J. J. ( 1998; ). Microbiology and biochemistry of the enhanced biological phosphate removal process. Water Res 32, 3193-3207.[CrossRef]
    [Google Scholar]
  29. Mobarry, B. K., Wagner, M., Urbain, V., Rittmann, B. E. & Stahl, D. A. ( 1996; ). Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria. Appl Environ Microbiol 62, 2156-2162.
    [Google Scholar]
  30. Muyzer, G., de Waal, E. C. & Uitterlinden, A. G. ( 1993; ). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59, 695-700.
    [Google Scholar]
  31. Muyzer, G., Teske, A. & Wirsen, C. O. ( 1995; ). Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch Microbiol 164, 165-172.[CrossRef]
    [Google Scholar]
  32. Nakamura, K., Hiraishi, A., Yoshimi, Y., Kawaharasaki, M., Masuda, K. & Kamagata, Y. ( 1995; ). Microlunatus phosphovorus gen. nov., sp. nov., a new gram-positive polyphosphate-accumulating bacterium isolated from activated sludge. Int J Syst Bacteriol 45, 17-22.[CrossRef]
    [Google Scholar]
  33. Nielsen, A. T., Liu, W.-T., Philips, C., Grady, L.Jr, Molin, S. & Stahl, D. A. ( 1999; ). Identification of a novel group of bacteria in sludge from a deteriorated biological phosphorus removal process. Appl Environ Microbiol 65, 1251-1258.
    [Google Scholar]
  34. Picard, C., Ponsonnet, C., Paget, E., Nesme, X. & Simonet, P. ( 1992; ). Detection and enumeration of bacteria in soil by direct DNA extraction and polymerase chain reaction. Appl Environ Microbiol 58, 2717-2722.
    [Google Scholar]
  35. Rajendran, N., Matsuda, O., Imamura, N. & Urushigawa, Y. ( 1992; ). Variation in microbial biomass and community structure in sediments of eutrophic bays as determined by phospholipid ester-linked fatty acids. Appl Environ Microbiol 58, 562-571.
    [Google Scholar]
  36. Raskin, L., Stromley, J. M., Rittmann, B. E. & Stahl, D. A. ( 1994; ). Group-specific 16S rRNA hybridization probes to describe natural communities of methanogens. Appl Environ Microbiol 60, 1232-1240.
    [Google Scholar]
  37. Riesner, D., Steger, G., Zimmat, R., Owens, R. A., Wagenhofer, M., Hillen, W., Vollbach, S. & Henco, K. ( 1989; ). Temperature-gradient gel electrophoresis of nucleic acids: analysis of conformational transitions, sequence variations, and protein–nucleic acid interactions. Electrophoresis 10, 377-389.[CrossRef]
    [Google Scholar]
  38. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406-425.
    [Google Scholar]
  39. Schuppler, M., Mertens, F., Schön, G. & Göbel, U. B. ( 1995; ). Molecular characterization of nocardioform actinomycetes in activated sludge by 16S rRNA analysis. Microbiology 141, 513-521.[CrossRef]
    [Google Scholar]
  40. Schuppler, M., Wagner, M., Schön, G. & Göbel, U. B. ( 1998; ). In situ identification of nocardioform actinomycetes in activated sludge using fluorescent rRNA-targeted oligonucleotide probes. Microbiology 144, 249-259.[CrossRef]
    [Google Scholar]
  41. Shintani, T., Liu, W.-T., Hanada, S., Kamagata, Y., Miyaoka, S., Suzuki, T. & Nakamura, K. ( 2000; ). Micropruina glycogenica gen. nov., sp. nov., a new Gram-positive glycogen-accumulating bacterium isolated from activated sludge. Int J Syst Evol Microbiol 50, 201-207.[CrossRef]
    [Google Scholar]
  42. Stahl, D. A., Key, R., Flesher, B. & Smit, J. ( 1992; ). The phylogeny of marine and freshwater caulobacters reflects their habitat. J Bacteriol 174, 2193-2198.
    [Google Scholar]
  43. Staley, J. T., Bryant, M. P., Pfennig, N. & Holt, J. G. (editors) (1989). Bergey’s Manual of Systematic Bacteriology, vol. 3. Baltimore: Williams & Wilkins.
  44. Tebbe, C. C. & Vahjen, W. ( 1993; ). Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and a yeast. Appl Environ Microbiol 59, 2657-2665.
    [Google Scholar]
  45. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673-4680.[CrossRef]
    [Google Scholar]
  46. Wagner, M., Erhart, R., Manz, W., Amann, R., Lemmer, H., Wedi, D. & Schleifer, K. H. ( 1994; ). Development of an rRNA-targeted oligonucleotide probe specific for the genus Acinetobacter and its application for in situ monitoring in activated sludge. Appl Environ Microbiol 60, 792-800.
    [Google Scholar]
  47. Wilson, I. G. ( 1997; ). Inhibition and facilitation of nucleic acid amplification. Appl Environ Microbiol 63, 3741-3751.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-5-1099
Loading
/content/journal/micro/10.1099/00221287-146-5-1099
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error