1887

Abstract

Biomarkers (respiratory quinones and cellular fatty acids) and denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA genes were used to characterize the microbial community structure of lab-scale enhanced biological phosphate-removal (EBPR) systems in response to altering sludge phosphorus (P) content. All the data suggest that the microbial community structures of sludge samples with a P content between 8 and 12·3% (sludge dry weight) (i.e. good EBPR activity) were very similar, but differed from those with 2% P content (i.e. no EBPR activity). For all samples analysed, ubiquinones Q-8 and Q-10, menaquinone MK-8(H), and fatty acids C, C and C were the major components. The dominance of Q-8, Q-10 and MK-8(H) suggested that large numbers of organisms belonging to the β and α subclasses of the and the from the high G+C Gram-positive bacteria, respectively, were present. DGGE analysis revealed at least 7–9 predominant DNA bands and numerous other fragments in each sample. Five major DGGE fragments from each of the 2% and 12% P-containing sludge samples, respectively, were successfully isolated and sequenced. Phylogenetic analysis of the sequences indicated that both 2% and 12% P-containing sludge samples shared three common phylotypes that were separately affiliated with a novel bacterial group from the γ subclass of the , two MK-8(H)-containing actinobacteria previously isolated from the 2% P-containing sludge, and a spp. in the α subclass of the . The phylogenetic analysis also revealed phylotypes unique to both sludge samples. Changes in sludge P content therefore had an effect on the composition and abundance of the predominant microbial populations, though specific phylotypes could not be unequivocally associated with EBPR.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-5-1099
2000-05-01
2020-04-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/5/1461099a.html?itemId=/content/journal/micro/10.1099/00221287-146-5-1099&mimeType=html&fmt=ahah

References

  1. Bond P., Hugenholtz P., Keller J., Blackall L.. 1995; Bacterial community structures of phosphate-removing and non-phosphate-removing activated sludge from sequencing batch reactors. Appl Environ Microbiol61:1910–1916
    [Google Scholar]
  2. Bond P., Erhart E., Wagner M., Keller J., Blackall L.. 1999; Identification of some of the major groups of bacteria in efficient and nonefficient biological phosphorus removal activated sludge systems. Appl Environ Microbiol65:4077–4084
    [Google Scholar]
  3. Cech J. S., Hartman P.. 1993; Competition between polyphosphate and polysaccharide accumulating bacteria in enhanced biological phosphate removal system. Water Res27:1219–1225[CrossRef]
    [Google Scholar]
  4. Collins M. D., Jones D.. 1981; Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol Rev45:316–354
    [Google Scholar]
  5. Comeau Y., Hall K. J., Hancock R. E. W., Oldham W. K.. 1986; Biochemical model for enhanced biological phosphorus removal. Water Res20:1511–1521[CrossRef]
    [Google Scholar]
  6. Dawes E. A., Senior P. J.. 1973; Energy reserve polymers in microorganisms. Adv Microbiol Physiol10:135–266
    [Google Scholar]
  7. Felsenstein J.. 1985; Confidence limits of phylogenies: an approach using the bootstrap. Evolution39:783–791[CrossRef]
    [Google Scholar]
  8. Felske A., Wolterink A., Van Lis R., Akkermans A. D.. 1998; Phylogeny of the main bacterial 16S rRNA sequences in Drentse A grassland soils (The Netherlands). Appl Environ Microbiol64:871–879
    [Google Scholar]
  9. Ferris M. J., Muyzer G., Ward D. M.. 1996; Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl Environ Microbiol62:340–346
    [Google Scholar]
  10. Fuhs G. W., Chen M.. 1975; Microbiological basis of phosphate removal in the activated sludge process for the treatment of wastewater. Microb Ecol22:119–138
    [Google Scholar]
  11. Haack S. K., Garchow H., Odelson D., Forney L. J., Klug M. J.. 1994; Accuracy, reproducibility, and interpretation of fatty acid methyl ester profiles of model bacterial communities. Appl Environ Microbiol60:2483–2493
    [Google Scholar]
  12. Heuer H., Krsek M., Baker P., Smalla K., Wellington E. M.. 1997; Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl Environ Microbiol63:3233–3241
    [Google Scholar]
  13. Hiraishi A., Masamune K., Kitamura H.. 1989; Characterization of the bacterial population structure in an anaerobic-aerobic activated sludge system on the basis of respiratory quinone profiles. Appl Environ Microbiol55:897–901
    [Google Scholar]
  14. Hiraishi A., Ueda Y., Ishihara J.. 1998; Quinone profiling of bacterial communities in natural and synthetic sewage activated sludge for enhanced phosphate removal. Appl Environ Microbiol64:992–998
    [Google Scholar]
  15. Jenkins D., Tandoi V.. 1991; The applied microbiology of enhanced biological phosphate removal – accomplishments and needs. Water Res25:1471–1478[CrossRef]
    [Google Scholar]
  16. Kämpfer P., Erhart R., Beimfohr C., Böhringer J., Wagner M., Amann R.. 1996; Characterization of bacterial communities from activated sludge: culture dependent numerical identification versus in situ identification using group- and genus-specific rRNA-targeted oligonucleotide probes. Microb Ecol322:101–121
    [Google Scholar]
  17. Kuba T., Smolders G., van Loosdrecht M. C. M., Heijnen J. J.. 1993; Biological phosphorus removal from wastewater by anaerobic-anoxic sequencing batch reactor. Water Sci Technol27:241–252
    [Google Scholar]
  18. Kumar S., Tamura K., Nei M.. 1993; mega: molecular evolutionary genetics analysis, version 1.0 University Park, PA: Pennsylvania State University;
    [Google Scholar]
  19. Lee N., Nielsen P. H., Andreasen K. H., Juretschko S., Nielsen J. L., Schleifer K.-H., Wagner M.. 1999; Combination of fluorescent in situ hybridization and microsutoradiography – new tool for structure-function analyses in microbial ecology. Appl Environ Microbiol65:1289–1297
    [Google Scholar]
  20. Liu W.-T.. 1995; Function, dynamics, and diversity of microbial population in anaerobic aerobic activated sludge processes for biological phosphate removal PhD thesis University of Tokyo;
    [Google Scholar]
  21. Liu W.-T., Mino T., Nakamura K., Matsuo T.. 1994; Role of glycogen in acetate uptake and polyhydroxyalkanoate synthesis in anaerobic–aerobic activated sludge with a minimized polyphosphate content. J Ferment Biotechnol77:535–540[CrossRef]
    [Google Scholar]
  22. Liu W.-T., Mino T., Matsuo T., Nakamura K.. 1996; Glycogen accumulating population and its anaerobic substrate uptake in anaerobic–aerobic activated sludge without biological phosphate removal. Water Res30:75–82[CrossRef]
    [Google Scholar]
  23. Liu W.-T., Nakamura K., Matsuo T., Mino T.. 1997a; Internal energy-based competition between polyphosphate- and glycogen-accumulating bacteria in biological phosphorus removal reactor – effect of the P/C feeding ratio. Water Res31:1430–1438[CrossRef]
    [Google Scholar]
  24. Liu W.-T., Marsh T. L., Chen H., Forney L. J.. 1997b; Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of gene encoding 16S rRNA. Appl Environ Microbiol63:4516–4522
    [Google Scholar]
  25. MacRae J. D., Smit J.. 1991; Characterization of caulobacters isolated from wastewater treatment systems. Appl Environ Microbiol573:751–758
    [Google Scholar]
  26. Marais G. v. R., Lowenthal R. E., Siebritz I. P.. 1983; Observations supporting phosphate removal by biological excess uptake – a review. Water Sci Technol15:15–42
    [Google Scholar]
  27. Mino T., Arun V., Tsuzuki Y., Matsuo T.. 1987; Effect of phosphorus accumulation on acetate metabolism in the biological phosphorus removal process. In Advances in Water Pollution Control: Biological Phosphate Removal from Wastewaters pp.27–38Edited by Ramadori R.. Oxford: Pergamon Press;
    [Google Scholar]
  28. Mino T., van Loosdrecht M. C. M., Heijnen J. J.. 1998; Microbiology and biochemistry of the enhanced biological phosphate removal process. Water Res32:3193–3207[CrossRef]
    [Google Scholar]
  29. Mobarry B. K., Wagner M., Urbain V., Rittmann B. E., Stahl D. A.. 1996; Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria. Appl Environ Microbiol62:2156–2162
    [Google Scholar]
  30. Muyzer G., de Waal E. C., Uitterlinden A. G.. 1993; Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol59:695–700
    [Google Scholar]
  31. Muyzer G., Teske A., Wirsen C. O.. 1995; Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch Microbiol164:165–172[CrossRef]
    [Google Scholar]
  32. Nakamura K., Hiraishi A., Yoshimi Y., Kawaharasaki M., Masuda K., Kamagata Y.. 1995; Microlunatus phosphovorus gen. nov., sp. nov., a new gram-positive polyphosphate-accumulating bacterium isolated from activated sludge. Int J Syst Bacteriol45:17–22[CrossRef]
    [Google Scholar]
  33. Nielsen A. T., Liu W.-T., Philips C., Grady L. Jr, Molin S., Stahl D. A.. 1999; Identification of a novel group of bacteria in sludge from a deteriorated biological phosphorus removal process. Appl Environ Microbiol65:1251–1258
    [Google Scholar]
  34. Picard C., Ponsonnet C., Paget E., Nesme X., Simonet P.. 1992; Detection and enumeration of bacteria in soil by direct DNA extraction and polymerase chain reaction. Appl Environ Microbiol58:2717–2722
    [Google Scholar]
  35. Rajendran N., Matsuda O., Imamura N., Urushigawa Y.. 1992; Variation in microbial biomass and community structure in sediments of eutrophic bays as determined by phospholipid ester-linked fatty acids. Appl Environ Microbiol58:562–571
    [Google Scholar]
  36. Raskin L., Stromley J. M., Rittmann B. E., Stahl D. A.. 1994; Group-specific 16S rRNA hybridization probes to describe natural communities of methanogens. Appl Environ Microbiol60:1232–1240
    [Google Scholar]
  37. Riesner D., Steger G., Zimmat R., Owens R. A., Wagenhofer M., Hillen W., Vollbach S., Henco K.. 1989; Temperature-gradient gel electrophoresis of nucleic acids: analysis of conformational transitions, sequence variations, and protein–nucleic acid interactions. Electrophoresis10:377–389[CrossRef]
    [Google Scholar]
  38. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425
    [Google Scholar]
  39. Schuppler M., Mertens F., Schön G., Göbel U. B.. 1995; Molecular characterization of nocardioform actinomycetes in activated sludge by 16S rRNA analysis. Microbiology141:513–521[CrossRef]
    [Google Scholar]
  40. Schuppler M., Wagner M., Schön G., Göbel U. B.. 1998; In situ identification of nocardioform actinomycetes in activated sludge using fluorescent rRNA-targeted oligonucleotide probes. Microbiology144:249–259[CrossRef]
    [Google Scholar]
  41. Shintani T., Liu W.-T., Hanada S., Kamagata Y., Miyaoka S., Suzuki T., Nakamura K.. 2000; Micropruina glycogenica gen. nov., sp. nov., a new Gram-positive glycogen-accumulating bacterium isolated from activated sludge. Int J Syst Evol Microbiol50:201–207[CrossRef]
    [Google Scholar]
  42. Stahl D. A., Key R., Flesher B., Smit J.. 1992; The phylogeny of marine and freshwater caulobacters reflects their habitat. J Bacteriol174:2193–2198
    [Google Scholar]
  43. Staley J. T., Bryant M. P., Pfennig N., Holt J. G..editors 1989; Bergey’s Manual of Systematic Bacteriologyvol. 3 Baltimore: Williams & Wilkins;
    [Google Scholar]
  44. Tebbe C. C., Vahjen W.. 1993; Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and a yeast. Appl Environ Microbiol59:2657–2665
    [Google Scholar]
  45. Thompson J. D., Higgins D. G., Gibson T. J.. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res22:4673–4680[CrossRef]
    [Google Scholar]
  46. Wagner M., Erhart R., Manz W., Amann R., Lemmer H., Wedi D., Schleifer K. H.. 1994; Development of an rRNA-targeted oligonucleotide probe specific for the genus Acinetobacter and its application for in situ monitoring in activated sludge. Appl Environ Microbiol60:792–800
    [Google Scholar]
  47. Wilson I. G.. 1997; Inhibition and facilitation of nucleic acid amplification. Appl Environ Microbiol63:3741–3751
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-5-1099
Loading
/content/journal/micro/10.1099/00221287-146-5-1099
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error