1887

Abstract

The isolation and functional characterization of a Na/H antiporter gene, is reported here. The gene encodes a protein of 840 amino acids that exhibits high levels of similarity in sequence, size, and structural and functional domains to a group of known Na/H antiporters of fungi. The gene is able to functionally complement the salt-sensitivity of a mutant, and mutations of two conserved aspartate residues to asparagines in the putative Na-binding site abolish this activity. Deletion of results in retardation of growth and a highly elongated morphology in a significant fraction of cells under conditions that normally support yeast growth. These results indicate that has a role in Na and H transport, salt-tolerance, and morphogenesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-5-1035
2000-05-01
2019-12-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/5/1461035a.html?itemId=/content/journal/micro/10.1099/00221287-146-5-1035&mimeType=html&fmt=ahah

References

  1. Aronson, P. S., Nee, J. & Suhm, M. A. ( 1982; ). Modifier role of internal H+ in activating the Na+–H+ exchanger in renal microvillus membrane vesicles. Nature 299, 161-163.[CrossRef]
    [Google Scholar]
  2. Balcells, L., Gomez, N., Casamayor, A., Clotet, J. & Arino, J. ( 1997; ). Regulation of salt tolerance in fission yeast by a protein-phosphatase-Z-like Ser/Thr protein phosphatase. Eur J Biochem 250, 476-483.[CrossRef]
    [Google Scholar]
  3. Becker, D. M. & Lundblad, V. (1994). Manipulation of yeast genes. In Current Protocols in Molecular Biology, pp. 13.7.1–13.7.10. Edited by F. M. Ausubel and others. Chichester: Wiley.
  4. Beck-Spague, C. & Jarvis, W. R. ( 1993; ). Secular trends in the epidemiology of nosocomial fungal infections in the United States, 1980–1990: national nosocomial infections surveillance system. J Infect Dis 167, 1247-1251.[CrossRef]
    [Google Scholar]
  5. Bernardis, F. D., Muhlschlegel, F. A., Cassone, A. & Fonzi, W. ( 1998; ). The pH of the host niche controls gene expression in and virulence of Candida albicans. Infect Immun 66, 3317-3325.
    [Google Scholar]
  6. Bianchini, L., L’Allemain, G. & Pouyssegur, J. ( 1997; ). The p42/p44 mitogen-activated protein kinase cascade is determinant in mediating activation of the Na+/H+ exchanger (NHE1 isoform) in response to growth factors. J Biol Chem 272, 271-279.[CrossRef]
    [Google Scholar]
  7. Braun, B. R. & Johnson, A. D. ( 1997; ). Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science 277, 105-109.[CrossRef]
    [Google Scholar]
  8. Cannon, R. D., Jenkinson, H. F. & Shepherd, M. G. ( 1992; ). Cloning and expression of Candida albicans ADE2 and proteinase genes on a replicative plasmid in C. albicans and in Saccharomyces cerevisiae. Mol Gen Genet 235, 453-457.[CrossRef]
    [Google Scholar]
  9. Chirgwin, T., Przybyla, A. E., MacDonald, R. J. & Rutter, W. J. ( 1979; ). Isolation of biologically active ribonucleic acid from sources enriched in ribonucleases. Biochemistry 18, 5294-5299.[CrossRef]
    [Google Scholar]
  10. Cormack, B. P., Bertram, G., Egerton, M., Gow, N. A. R., Falkow, S. & Brown, A. J. P. ( 1997; ). Yeast-enhanced green fluorescent protein (yEGFP): a reporter of gene expression in Candida albicans. Microbiology 143, 303-311.[CrossRef]
    [Google Scholar]
  11. Dibrov, P. & Fliegel, L. ( 1998; ). Comparative molecular analysis of Na+/H+ exchangers: a unified model for Na+/H+ antiport. FEBS Lett 424, 1-5.[CrossRef]
    [Google Scholar]
  12. Dibrov, P., Smith, J. J., Young, P. G. & Fliegel, L. ( 1997; ). Identification and localization of the sod2 gene product in fission yeast. FEBS Lett 405, 119-124.[CrossRef]
    [Google Scholar]
  13. Dibrov, P., Young, P. G. & Fliegel, L. ( 1998; ). Functional analysis of amino acid residues essential for activity in the Na+/H+ exchanger of fission yeast. Biochemistry 37, 8282-8288.[CrossRef]
    [Google Scholar]
  14. Fleishman, D. G. ( 1991; ). Li+ as a Na+ analog in ion transport process in vertebrates. Tsitologiia 33, 111-117.
    [Google Scholar]
  15. Fonzi, W. A. & Irwin, M. Y. ( 1993; ). Isogenic strain construction and gene mapping in Candida albicans. Genetics 134, 717-728.
    [Google Scholar]
  16. Gow, N. A. R. ( 1997; ). Germ tube growth of Candida albicans. Curr Top Med Mycol 8, 43-55.
    [Google Scholar]
  17. Hahnenberger, K. M., Jia, Z. & Young, P. G. ( 1997; ). Functional expression of the Scizosaccharomyces pombe Na+/H+ antiporter gene, sod2, in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 93, 5031-5036.
    [Google Scholar]
  18. Hiramatsu, T., Kodama, K., Kuroda, T., Mizushima, T. & Tsuchiya, T. ( 1998; ). A putative multisubunit Na+/H+ antiporter from Staphylococcus aureus. J Bacteriol 180, 6642-6648.
    [Google Scholar]
  19. Inoue, H., Noumi, T., Tsuchiya, T. & Kanazawa, H. ( 1995; ). Essential aspartic acid residues, Asp-133, Asp-163 and Asp-164, in the transmembrane helices of a Na+/H+ antiporter (NhaA) from Escherichia coli. FEBS Lett 363, 264-268.[CrossRef]
    [Google Scholar]
  20. Iwaki, T., Higashida, Y., Tsuji, H., Tamai, Y. & Watanabe, Y. ( 1998; ). Characterization of a second gene (ZSOD22) of Na+/H+ antiporter from salt-tolerant yeast Zygosaccharomyces rouxii and functional expression of ZSOD2 and ZSOD22 in Saccharomyces cerevisiae. Yeast 14, 1167-1174.[CrossRef]
    [Google Scholar]
  21. Jia, Z., McCullough, N., Martel, R., Hemmingsen, S. & Young, P. G. ( 1992; ). Gene amplification at a locus encoding a putative Na+/H+ antiporter confers sodium and lithium tolerance in fission yeast. EMBO J 11, 1631-1640.
    [Google Scholar]
  22. Kaur, S. & Mishra, P. ( 1994; ). Differential increase in cytoplasmic pH at bud and germ tube formation in Candida albicans: studies of a nongerminative variant. Can J Microbiol 40, 720-723.[CrossRef]
    [Google Scholar]
  23. Kohler, G. A., White, T. C. & Agabian, N. ( 1997; ). Overexpression of a cloned IMP dehydrogenase gene of Candida albicans confers resistance to the specific inhibitor mycophenolic acid. J Bacteriol 179, 2331-2338.
    [Google Scholar]
  24. Lee, K. L., Buckley, H. R. & Campbell, C. C. ( 1975; ). An amino acid liquid synthetic medium for the development of mycelial and yeast forms of Candida albicans. Sabouraudia 13, 148-153.[CrossRef]
    [Google Scholar]
  25. Lo, H., Kohler, J. R., DiDomenico, B., Loebenberg, D., Cacciapuoti, A. & Fink, G. R. ( 1997; ). Nonfilamentous C. albicans mutants are avirulent. Cell 90, 939-949.[CrossRef]
    [Google Scholar]
  26. Maniatis, T., Fritsch, E. F. & Sambrook, J. (1982). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  27. Monk, B. C., Kurtz, M. B., Marrinan, J. A. & Perlin, D. S. ( 1991; ). Cloning and characterization of the plasma membrane H+-ATPase from Candida albicans. J Bacteriol 173, 6826-6836.
    [Google Scholar]
  28. Monk, B. C., Niimi, M. & Shepherd, M. G. ( 1993; ). The Candida albicans plasma membrane and H+-ATPase during yeast growth and germ tube formation. J Bacteriol 175, 5566-5574.
    [Google Scholar]
  29. Northrop, F. D., Ljubojevic, S. & Davies, J. M. ( 1997; ). Influence of Na+ and anions on the dimorphic transition of Candida albicans. Microbiology 143, 3757-3765.[CrossRef]
    [Google Scholar]
  30. Nozaki, K., Kuroda, T., Mizushima, T. & Tsuchiya, T. ( 1998; ). A new Na+/H+ antiporter, NhaD, of Vibrio parahaemolyticus. Biochim Biophys Acta 1369, 213-220.[CrossRef]
    [Google Scholar]
  31. Padan, E. & Schuldiner, S. ( 1994; ). Molecular physiology of Na+/H+ antiporters, key transporters in circulation of Na+ and H+ in cells. Biochim Biophys Acta 1185, 129-151.[CrossRef]
    [Google Scholar]
  32. Padan, E. & Schuldiner, S. ( 1996; ). Bacterial Na+/H+ antiporters – molecular biology, biochemistry and physiology. In Handbook of Biological Physics, vol. 2, Transport processes in eukaryotic and prokaryotic organisms, pp. 501-531. Edited by W. N. Konings, H. R. Kaback & J. S. Lolkema. Amsterdam and Oxford: Elsevier.
  33. Paranjape, V., Roy, B. G. & Datta, A. ( 1990; ). Involvement of calcium, calmodulin and phosphorylation in morphogenesis of Candida albicans. J Gen Microbiol 136, 2149-2154.[CrossRef]
    [Google Scholar]
  34. Prior, C., Potier, S., Souciet, J. & Sychrova, H. ( 1996; ). Characterization of the NHA1 gene encoding a Na+/H+ antiporter of the yeast Saccharomyces cerevisiae. FEBS Lett 387, 89-93.[CrossRef]
    [Google Scholar]
  35. Radford, D. R., Challacombe, S. J. & Walter, J. D. ( 1994; ). A scanning electron microscopy investigation of the structure of colonies of different morphologies produced by phenotypic switching of Candida albicans. J Med Microbiol 40, 416-423.[CrossRef]
    [Google Scholar]
  36. Ros, R., Montesinos, C., Rimon, A., Padan, E. & Serrano, R. ( 1998; ). Altered Na+ and Li+ homeostasis in Saccharomyces cerevisiae cells expressing the bacterial cation antiporter NhaA. J Bacteriol 180, 3131-3136.
    [Google Scholar]
  37. Saporito-Irwin, S. M., Birse, C. E., Syoherd, P. S. & Fonzi, W. A. ( 1995; ). PHR1, a pH-regulated gene of Candida albicans is required for morphogenesis. Mol Cell Biol 15, 601-613.
    [Google Scholar]
  38. Soll, D. R. ( 1996; ). The emerging molecular biology of switching in Candida albicans. ASM News 62, 415-419.
    [Google Scholar]
  39. Stewart, E., Gow, N. A. R. & Bowen, D. V. ( 1988; ). Cytoplasmic alkalinization during germ tube formation in Candida albicans. J Gen Microbiol 134, 1079-1087.
    [Google Scholar]
  40. Utsugi, J., Inaba, K., Kuroda, T., Tsuda, M. & Tsuchiya, T. ( 1998; ). Cloning and sequencing of a novel Na+/H+ antiporter gene from Pseudomonas aeruginosa. Biochim Biophys Acta 1398, 330-334.[CrossRef]
    [Google Scholar]
  41. Wakabayashi, S., Shigekawa, M. & Pouyssegur, J. ( 1997; ). Molecular physiology of vertebrate Na+/H+ exchangers. Physiol Rev 77, 51-74.
    [Google Scholar]
  42. Watanabe, Y., Miwa, S. & Tamai, Y. ( 1995; ). Characterization of Na+/H+-antiporter gene closely related to the salt–tolerance of yeast Zygosaccharomyces rouxii. Yeast 11, 829-838.[CrossRef]
    [Google Scholar]
  43. Wieland, J., Nitsche, A. M., Strayle, J., Steiner, H. & Rudolph, H. K. ( 1995; ). The PMR2 gene cluster encodes functionally distinct isoforms of a putative Na+ pump in the yeast plasma membrane. EMBO J 14, 3870-3882.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-5-1035
Loading
/content/journal/micro/10.1099/00221287-146-5-1035
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error