1887

Abstract

Addition of lactococcin 972 to exponentially growing sensitive cultures of resulted in cell elongation and widening. Thin sections revealed that septum invagination was blocked. Cell growth progressed until most cells showed equatorial constriction and even initial deposition of material at the septum ring, although cell division did not proceed any further. The increase in the incorporation of labelled precursors into the cell wall shifted from an exponential to a linear mode in treated cultures, subsequently being arrested. Gross degeneration of the cells was observed prior to cell death, followed by slow lysis of the culture. In contrast, stationary-phase cultures remained unaffected.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-4-949
2000-04-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/4/1460949a.html?itemId=/content/journal/micro/10.1099/00221287-146-4-949&mimeType=html&fmt=ahah

References

  1. Abee, T. ( 1995; ). Pore-forming bacteriocins of Gram-positive bacteria and self-protection mechanisms of producer organisms. FEMS Microbiol Lett 129, 1-10.[CrossRef]
    [Google Scholar]
  2. Abee, T., Klaenhammer, T. R. & Letellier, L. ( 1994; ). Kinetics studies of the action of lacticin F, a bacteriocin produced by Lactobacillus johnsonii that forms poration complexes in the cytoplasmic membrane. Appl Environ Microbiol 60, 1006-1013.
    [Google Scholar]
  3. Archibald, A. R., Hancock, I. C. & Harwood, C. R. (1993). Cell wall structure, synthesis and turnover. In Bacillus subtilis and other Gram positive bacteria, pp. 381–410. Edited by A. L. Sonenshein and others. Washington DC: American Society for Microbiology.
  4. Barrena-González, C., Huot, E. & Petitdemange, H. ( 1996; ). Mode of action of a bacteriocin (J46) produced by Lactococcus lactis subsp. cremoris J46. J Food Prot 59, 955-962.
    [Google Scholar]
  5. Botta, G. A. & Park, J. T. ( 1981; ). Evidence for involvement of penicillin-binding protein 3 in murein synthesis during septation but not during cell elongation. J Bacteriol 145, 333-340.
    [Google Scholar]
  6. Brötz, H., Bierbaum, G., Reynolds, P. E. & Sahl, H. G. ( 1998; ). The lantibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid II. Antimicrob Agents Chemother 42, 154-160.
    [Google Scholar]
  7. de Chastelier, C., Hellio, R. & Ryter, A. ( 1975; ). Study of cell wall growth in Bacillus megaterium by high resolution autoradiography. J Bacteriol 123, 1184-1196.
    [Google Scholar]
  8. Cintas, L. M., Casaus, P., Holo, H., Hernández, P. E., Nes, I. F. & Havarstein, L. S. ( 1998; ). Enterocins L50A and L50B, two novel bacteriocins from Enterococcus faecium L50, are related to staphylococcal hemolysins. J Bacteriol 180, 1988-1994.
    [Google Scholar]
  9. Cole, R. M. & Hahn, H. H. ( 1962; ). Cell wall replication in Streptococcus pyogenes: immunofluorescent methods applied during growth show that new wall is formed equatorially. Science 135, 722-724.[CrossRef]
    [Google Scholar]
  10. Daneo-Moore, L. & Shockman, G. D. ( 1977; ). The bacterial cell surface in growth and division. In The Synthesis, Assembly and Turnover of Cell Surface Components, pp. 597-715. Edited by G. Poste & G. L. Nicholson. Amsterdam: Elsevier.
  11. Driessen, A. J., van der Hooven, H. W., Kuiper, W., van de Kamp, M., Sahl, H. G., Konings, R. N. & Konings, W. N. ( 1995; ). Mechanistic studies of lantibiotic induced permeabilization of phospholipid vesicles. Biochemistry 34, 1606-1614.[CrossRef]
    [Google Scholar]
  12. Erickson, H. P., Taylor, D. W., Taylor, K. A. & Bramhill, D. ( 1996; ). Bacterial cell division protein FtsZ assembles into protofilament sheets and minirings, structural homologs of tubulin polymers. Proc Natl Acad Sci USA 93, 519-523.[CrossRef]
    [Google Scholar]
  13. González, B., Glaasker, E., Kunji, E. R. S., Driessen, A. J. M., Suárez, J. E. & Konings, W. N. ( 1996; ). Bactericidal mode of action of plantaricin C. Appl Environ Microbiol 62, 2701-2709.
    [Google Scholar]
  14. Koch, A. L. & Doyle, R. J. ( 1986; ). Growth strategy for the Gram positive rod. FEMS Microbiol Rev 32, 247-254.[CrossRef]
    [Google Scholar]
  15. Lutkenhaus, J. & Addinall, S. G. ( 1997; ). Bacterial cell division and the Z ring. Annu Rev Biochem 66, 93-116.[CrossRef]
    [Google Scholar]
  16. McAuliffe, O., Ryan, M. P., Ross, R. P., Hill, C., Breeuwer, P. & Abee, T. ( 1998; ). Lacticin 3147, a broad-spectrum bacteriocin which selectively dissipates the membrane potential. Appl Environ Microbiol 64, 439-445.
    [Google Scholar]
  17. Maisnier-Patin, S., Forni, E. & Richard, J. ( 1996; ). Purification, partial characterisation and mode of action of enterococcin EFS2, an antilisterial bacteriocin produced by a strain of Enterococcus faecalis isolated from a cheese. Int J Food Microbiol 30, 255-270.[CrossRef]
    [Google Scholar]
  18. Martı́nez, B., Suárez, J. E. & Rodrı́guez, A. ( 1996; ). Lactococcin 972, a homodimeric lactococcal bacteriocin whose primary target is not the plasma membrane. Microbiology 142, 2393-2398.[CrossRef]
    [Google Scholar]
  19. Martı́nez, B., Fernández, M., Rodrı́guez, A. & Suárez, J. E. ( 1999; ). Synthesis of lactococcin 972, a bacteriocin produced by Lactococcus lactis IPLA 972, depends on the expression of a plasmid-encoded bicistronic operon. Microbiology 145, 3155-3161.
    [Google Scholar]
  20. Moll, G., Hildeng-Hauge, H., Nissen-Meyer, J., Nes, I. F., Konings, W. N. & Driessen, A. J. ( 1998; ). Mechanistic properties of the two-component bacteriocin lactococcin G. J Bacteriol 180, 96-99.
    [Google Scholar]
  21. Mukherjee, A. & Lutkenhaus, J. ( 1994; ). Guanine nucleotide-dependent assembly of FtsZ into filaments. J Bacteriol 176, 2754-2758.
    [Google Scholar]
  22. Nes, I. F., Diep, B. D., Havarstein, L. S., Brurberg, M. B., Eisink, V. & Holo, H. ( 1996; ). Biosynthesis of bacteriocins in lactic acid bacteria. Antonie Leeuwenhoek 70, 113-128.[CrossRef]
    [Google Scholar]
  23. Nilsen, T., Nes, I. F. & Holo, H. (1999). Enterolysin A, a bacteriolytic protein produced by Enterococcus faecalis LMG 2333. VI Symposium on Lactic Acid Bacteria. Veldhoven, the Netherlands, abstract C61.
  24. Ojcius, D. M. & Young, J. D. ( 1991; ). Cytolytic pore forming proteins and peptides, is there a common structural motif? Trends Biochem Sci 16, 225-229.[CrossRef]
    [Google Scholar]
  25. Parente, E., Moles, M. & Ricciardi, A. ( 1996; ). Leucocin F10, a bacteriocin from Leuconostoc carnosum. Int J Food Microbiol 33, 231-243.[CrossRef]
    [Google Scholar]
  26. Pogliano, J., Pogliano, K., Weiss, D. S., Losick, R. & Beckwith, J. ( 1997; ). Inactivation of FtsI inhibits constriction of the FtsZ cytokinetic ring and delays the assembly of FtsZ rings at potential division sites. Proc Natl Acad Sci USA 94, 559-564.[CrossRef]
    [Google Scholar]
  27. Reddish, G. F. ( 1929; ). Methods for testing antiseptics. J Lab Clin Med 14, 649-658.
    [Google Scholar]
  28. Reynolds, E. S. ( 1963; ). The use of lead citrate at high pH as electron opaque stain in electron microscopy. J Cell Biol 17, 209-212.
    [Google Scholar]
  29. Rodrı́guez, A., Caso, J. L., Hardisson, C. & Suárez, J. E. ( 1986; ). Characteristics of the developmental cycle of actinophage ϕC31. J Gen Microbiol 132, 1695-1701.
    [Google Scholar]
  30. Ryter, A. & Kellenberger, E. ( 1958; ). Étude au microscope electronique de plasmas contenant de l’acide désoxyribonucleique. Z Naturforsch 13, 597-605.
    [Google Scholar]
  31. Tormo, A., Ayala, J. A., de Pedro, M. A., Aldea, M. & Vicente, M. ( 1986; ). Interaction of FtsA and PBP3 proteins in the Escherichia coli septum. J Bacteriol 166, 985-992.
    [Google Scholar]
  32. Wang, L., Khattar, M. K., Donachie, W. D. & Lutkenhaus, J. ( 1998; ). FtsI and FtsW are localized to the septum in Escherichia coli. J Bacteriol 180, 2810-2816.
    [Google Scholar]
  33. Wong, W., Young, F. E. & Chatterjee, A. N. ( 1974; ). Regulation of bacterial cell walls: turnover of cell wall in Staphylococcus aureus. J Bacteriol 120, 837-843.
    [Google Scholar]
  34. Zajdel, J. K., Ceglowski, P. & Dobrzanski, W. ( 1985; ). Mechanism of action of lactostrepcin 5, a bacteriocin produced by Streptococcus cremoris 202. Appl Environ Microbiol 49, 969-974.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-4-949
Loading
/content/journal/micro/10.1099/00221287-146-4-949
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error