1887

Abstract

Although much is known about the bacterial cellulosome and its various protein components, their contributions to bacterial growth on cellulose and the process of cellulolysis cannot currently be assessed. To remedy this, the authors have developed gene transfer techniques for ATCC 35319. Firstly, transfer of Tn has been obtained using an donor. Secondly, IncP-mediated conjugative mobilization of plasmids from donors has also been achieved. The yield of transconjugants in both cases was low and was probably limited by the suboptimal growth conditions that must of necessity be employed for the co-culture of oligotrophic with copiotrophic donors. A restriction endonuclease was detected in crude extracts of . This enzyme, named I, is an isoschizomer of I (II). Electro-transformation was employed to establish plasmids containing the replication functions of pAMβ1 (), pIM13 (), pCB102 (), pIP404 () and pWV01 ( subsp. ) in . Transformants were only obtained if the DNA was appropriately methylated on the external C of the sequence 5′-CCGG-3′ using either FI methylase or I methylase . Plasmids based on the pAMβ1 and pIM13 replicons were more stably maintained than one based on the pCB102 replicon. Selection of transformants on solid medium led to low apparent transformation efficiencies (approx. 10 transformants per μg DNA) which might, in part, reflect the low plating efficiency of the organism. Selection of transformants in liquid medium led to a higher apparent yield of transformants (between 10 and 10 transformants per μg DNA). The methods developed here will pave the way for functional analysis of the various cellulosome components .

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-12-3071
2000-12-01
2020-01-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/12/1463071a.html?itemId=/content/journal/micro/10.1099/00221287-146-12-3071&mimeType=html&fmt=ahah

References

  1. Anderson K. L., Megehee J. A., Varel V. H.. 1998; Conjugal transfer of transposon Tn1545 into the cellulolytic bacterium Eubacterium cellulosolvens. Lett Appl Microbiol26:35–37[CrossRef]
    [Google Scholar]
  2. Awad M. M., Bryant A. E., Stevens D. L., Rood J. I.. 1995; Virulence studies on chromosomal α-toxin and θ-toxin mutants constructed by allelic exchange provide genetic evidence for the essential role of α-toxin in Clostridium perfringens-mediated gas gangrene. Mol Microbiol15:191–202[CrossRef]
    [Google Scholar]
  3. Azeddoug H., Reysset G.. 1991; Recognition sequence of a new methyl-specific restriction system from Clostridium acetobutylicum strain ABKn8. FEMS Microbiol Lett78:153–156[CrossRef]
    [Google Scholar]
  4. Azeddoug H., Hubert J., Reysset G.. 1989; Characterization of a methyl-specific restriction system in Clostridium acetobutylicum strain N1-4081. FEMS Microbiol Lett65:323–326[CrossRef]
    [Google Scholar]
  5. Azeddoug H., Hubert J., Reysset G.. 1992; Stable inheritance of shuttle vectors based on plasmid pIM13 in a mutant strain of Clostridium acetobutylicum. J Gen Microbiol138:1371–1378[CrossRef]
    [Google Scholar]
  6. Bayer E. A., Shimon L. J. W., Shoham Y., Lamed R.. 1998; Cellulosomes – structure and ultrastructure. J Struct Biol124:221–234[CrossRef]
    [Google Scholar]
  7. Bélaich J.-P., Tardif C., Bélaich A., Gaudin C.. 1997; The cellulolytic system of Clostridium cellulolyticum. J Biotechnol57:3–14[CrossRef]
    [Google Scholar]
  8. Biswas I., Gruss A., Ehrlich S. D., Maguin E.. 1993; High-efficiency gene inactivation and replacement system for Gram-positive bacteria. J Bacteriol175:3628–3635
    [Google Scholar]
  9. Boyer H. W., Roulland-Dussoix D.. 1969; A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol41:459–472[CrossRef]
    [Google Scholar]
  10. Brehm J. K., Pennock A., Bullman H. M. S., Young M., Oultram J. D., Minton N. P.. 1992; Physical characterization of the replication origin of the cryptic plasmid pCB101 isolated from Clostridium butyricum NCIB7423. Plasmid28:1–13[CrossRef]
    [Google Scholar]
  11. Bruand C., Le Chatelier E., Ehrlich S. D., Jannière L.. 1993; A 4th class of theta-replicating plasmids: the pAMβ1 family from Gram-positive bacteria. Proc Natl Acad Sci USA90:11668–11672[CrossRef]
    [Google Scholar]
  12. Caillaud F., Carlier C., Courvalin P.. 1987; Physical analysis of the conjugative shuttle transposon Tn1545. Plasmid17:58–60[CrossRef]
    [Google Scholar]
  13. Clewell D. B., Flannagan S. E.. 1993; The conjugative transposons of Gram-positive bacteria. In Bacterial Conjugation pp.369–393Edited by Clewell D. B.. New York: Plenum Press;
    [Google Scholar]
  14. Collins M. E., Oultram J., Young M.. 1985; Identification of restriction fragments from two cryptic Clostridium butyricum plasmids that promote the establishment of a replication-defective plasmid in Bacillus subtilis. J Gen Microbiol131:2097–2105
    [Google Scholar]
  15. Courvalin P., Carlier C.. 1986; Transposable multiple antibiotic resistance in Streptococcus pneumoniae. Mol Gen Genet205:291–297[CrossRef]
    [Google Scholar]
  16. Courvalin P., Carlier C.. 1987; Tn1545: a conjugative shuttle transposon. Mol Gen Genet206:259–264[CrossRef]
    [Google Scholar]
  17. Davis T. O., Henderson I., Brehm J. K., Minton N. P.. 2000; Development of a transformation and gene reporter system for group II, non-proteolytic Clostridium botulinum type B strains. J Mol Microbiol Biotechnol2:59–69
    [Google Scholar]
  18. Doi R. H., Park J.-S., Liu C.-C., Malburg L. M., Tmaru Y., Ichiishi A., Ibrahim A.. 1998; Cellulosome and non-cellulosomal cellulases of Clostridium cellulovorans. Extremophiles2:53–60[CrossRef]
    [Google Scholar]
  19. Ehrlich S. D., Bruand C., Sozhamannan S., Dabert P., Gros M. F., Jannière L., Gruss A.. 1991; Plasmid replication and structural stability in Bacillus subtilis. Res Microbiol142:869–873[CrossRef]
    [Google Scholar]
  20. Evans V. J., Liyanage H., Ravagnani A., Young M., Kashket E. R.. 1998; Truncation of peptide deformylase reduces the growth rate and stabilizes solvent production in Clostridium beijerinckii NCIMB 8052. Appl Environ Microbiol64:1780–1785
    [Google Scholar]
  21. Felix C. R., Ljungdahl L. G.. 1993; The cellulosome: the exocellular organelle of Clostridium. Annu Rev Microbiol47:791–819[CrossRef]
    [Google Scholar]
  22. Franke A. E., Clewell D. B.. 1981; Evidence for a chromosome-borne resistance transposon (Tn916) in Streptococcus faecalis that is capable of ‘‘conjugal’’ transfer in the absence of a conjugative plasmid. J Bacteriol145:494–502
    [Google Scholar]
  23. Gal L., Pagès S., Gaudin C., Bélaich A., Reverbel-Leroy C., Tardif C., Bélaich J.-P.. 1997; Characterization of the cellulolytic complex (cellulosome) produced by Clostridium cellulolyticum. Appl Environ Microbiol63:903–909
    [Google Scholar]
  24. Garcia-Martinez D. V., Shinmyo A., Madia A., Demain A. L.. 1980; Studies on cellulase production by Clostridium thermocellum. Eur J Appl Microbiol Biotechnol9:189–197[CrossRef]
    [Google Scholar]
  25. Garnier T., Cole S. T.. 1988; Complete nucleotide sequence and genetic organization of the bacteriocinogenic plasmid, pIP404, from Clostridium perfringens. Plasmid19:134–150[CrossRef]
    [Google Scholar]
  26. Gelhaye E., Gehin A., Petitdemange H.. 1993a; Colonization of crystalline cellulose by Clostridium cellulolyticum ATCC 35319. Appl Environ Microbiol59:3154–3156
    [Google Scholar]
  27. Gelhaye E., Petitdemange H., Gay R.. 1993b; Adhesion and growth rate of Clostridium cellulolyticum ATCC 35319 on crystalline cellulose. J Bacteriol175:3452–3458
    [Google Scholar]
  28. Giallo J., Gaudin C., Bélaich J.-P.. 1985; Metabolism and solubilization of cellulose by Clostridium cellulolyticum H10. Appl Environ Microbiol49:1216–1221
    [Google Scholar]
  29. Green E. M., Boynton Z. L., Harris L. M., Rudolph F. B., Papoutsakis E. T., Bennett G. N.. 1996; Genetic manipulation of acid formation pathways by gene inactivation in Clostridium acetobutylicum ATCC 824. Microbiology142:2079–2086[CrossRef]
    [Google Scholar]
  30. Gruss A., Ehrlich S. D.. 1988; Insertion of foreign DNA into plasmids from Gram-positive bacteria induces formation of high-molecular-weight plasmid multimers. J Bacteriol170:1183–1190
    [Google Scholar]
  31. Gruss A., Ehrlich S. D.. 1989; The family of highly interrelated single-stranded deoxyribonucleic-acid plasmids. Microbiol Rev53:231–241
    [Google Scholar]
  32. Guedon E., Payot S., Desvaux M., Petitdemange H.. 1999a; Carbon and electron flow in Clostridium cellulolyticum grown in chemostat culture on synthetic medium. J Bacteriol181:3262–3269
    [Google Scholar]
  33. Guedon E., Payot S., Desvaux M., Petitdemange H.. 1999b; Growth inhibition of Clostridium cellulolyticum by an inefficiently regulated carbon flow. Microbiology145:1831–1838[CrossRef]
    [Google Scholar]
  34. Hanahan D.. 1985; Techniques for transformation of E. coli. In DNA Cloning, a Practical Approachvol. 1 pp.109–135Edited by Glover D. M.. Oxford: IRL Press;
    [Google Scholar]
  35. Hedges R. W., Jacob A. E.. 1974; Transposition of ampicillin resistance from RP4 to other replicons. Mol Gen Genet132:31–34[CrossRef]
    [Google Scholar]
  36. Hinds J., Mahenthiralingam E., Kempsell K. E., Duncan K., Stokes R. W., Parish T., Stoker N. G.. 1999; Enhanced gene replacement in mycobacteria. Microbiology145:519–527[CrossRef]
    [Google Scholar]
  37. Kok J., van der Vossen J. M. B. M., Venema G.. 1984; Construction of plasmid cloning vectors for lactic streptococci which also replicate in Bacillus subtilis and Escherichia coli. Appl Environ Microbiol48:726–731
    [Google Scholar]
  38. LeBlanc D. J., Lee L. N.. 1984; Physical and genetic analyses of streptococcal plasmid pAMβ1 and cloning of its replication region. J Bacteriol157:445–453
    [Google Scholar]
  39. Leenhouts K. J., Olner B., Bron S., Kok J., Venema G., Sleegers J. F. M. L.. 1991; Nucleotide sequence and characterization of the broad-host-range lactococcal plasmid pWV01. Plasmid26:55–66[CrossRef]
    [Google Scholar]
  40. Maguin E., Duwat P., Hege T., Ehrlich S. D., Gruss A.. 1992; New thermosensitive plasmid for Gram-positive bacteria. J Bacteriol174:5633–5638
    [Google Scholar]
  41. Mermelstein L., Papoutsakis E. T.. 1993; In vivo methylation in Escherichia coli by the Bacillus subtilis phage ϕ3Ti methyltransferase to protect plasmids from restriction upon transformation of Clostridium acetobuytlicum ATCC824. Appl Environ Microbiol59:1077–1081
    [Google Scholar]
  42. Minton N. P., Morris J. G.. 1981; Isolation and partial characterization of three cryptic plasmids from strains of Clostridium butyricum. J Gen Microbiol127:325–331
    [Google Scholar]
  43. Minton N. P., Brehm J. K., Swinfield T.-J., Whelan S. M., Mauchline M. L., Bodsworth N., Oultram J. D.. 1993; Clostridial cloning vectors. In The Clostridia and Biotechnology pp.119–150Edited by Woods D. R.. Boston: Butterworth-Heinemann;
    [Google Scholar]
  44. Monod M., Dnoya C., Dubnau D.. 1986; Sequence and properties of pIM13, a macrolide-lincosmide-streptogramin B resistance plasmid from Bacillus subtilis. J Bacteriol167:138–147
    [Google Scholar]
  45. Mullany P., Wilks M., Tabaqchali S.. 1991; Transfer of Tn916and Tn916ΔE into Clostridium difficile:demonstration of a hot-spot for these elements in the C. difficilegenome. FEMS Microbiol Lett79:191–194
    [Google Scholar]
  46. Noirot Ph., Petit M.-A., Ehrlich S. D.. 1987; Plasmid replication stimulates DNA recombination in Bacillus subtilis. J Mol Biol196:39–47[CrossRef]
    [Google Scholar]
  47. Oultram J. D., Loughlin M., Swinfield T.-J., Brehm J. K., Thompson D. E., Minton N. P.. 1988; Introduction of plasmids into whole cells of Clostridium acetobutylicum by electroporation. FEMS Microbiol Lett56:83–88[CrossRef]
    [Google Scholar]
  48. Pagès S., Gal L., Bélaich A., Gaudin C., Tardif C., Bélaich J.-P.. 1997; Role of scaffolding protein CipC of Clostridium cellulolyticum in cellulose degradation. J Bacteriol179:2810–2816
    [Google Scholar]
  49. Pagès S., Bélaich A., Fiérobe H.-P., Tardif C., Gaudin C., Bélaich J.-P.. 1999; Sequence analysis of scaffolding protein CipC and ORFXp, a new cohesin-containing protein in Clostridium cellulolyticum: comparison of various cohesin domains and subcellular localization of ORFXp. J Bacteriol181:1801–1810
    [Google Scholar]
  50. Payot S., Guedon E., Cailliez C., Gelhaye E., Petitdemange H.. 1998; Metabolism of cellobiose by Clostridium cellulolyticum growing in continuous culture: evidence for decreased NADH reoxidation as a factor limiting growth. Microbiology144:375–384[CrossRef]
    [Google Scholar]
  51. Petitdemange E., Caillet F., Giallo J., Gaudin C.. 1984; Clostridium cellulolyticum sp. nov., a cellulolytic, mesophilic species from decayed grass. Int J Syst Bacteriol34:155–159[CrossRef]
    [Google Scholar]
  52. Reverbel-Leroy C., Pagès S., Bélaich A., Bélaich J.-P., Tardif C.. 1997; The processive endocellulase CelF, a major component of the Clostridium cellulolyticum cellulosome: purification and characterization of the recombinant form. J Bacteriol179:46–52
    [Google Scholar]
  53. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  54. Scott J. R., Churchward G. G.. 1995; Conjugative transposition. Annu Rev Microbiol49:367–397[CrossRef]
    [Google Scholar]
  55. Shoham Y., Lamed R., Bayer E. A.. 1999; The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides. Trends Microbiol7:275–281[CrossRef]
    [Google Scholar]
  56. Sloan J., Warner T. A., Scott P. T., Bannan T. L., Berryman D. I., Rood J. I.. 1992; Construction of a sequenced Clostridium perfringens-Escherichia coli shuttle plasmid. Plasmid27:207–219[CrossRef]
    [Google Scholar]
  57. Southern E. M.. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol98:503–517[CrossRef]
    [Google Scholar]
  58. Thomas C. M., Smith C. A.. 1987; Incompatiblity group P plasmids: genetics, evolution, and use in genetic manipulation. Annu Rev Microbiol41:77–101[CrossRef]
    [Google Scholar]
  59. Trieu-Cuot P., Carlier C., Martin P., Courvalin P.. 1987; Plasmid transfer by conjugation from Escherichia coli to Gram-positive bacteria. FEMS Microbiol Lett48:289–294[CrossRef]
    [Google Scholar]
  60. Walter J., Noyerweidner M., Trautner T. A.. 1990; The amino-acid-sequence of the CCGG recognizing DNA methyltransferase M.BsuFI – implications for the analysis of sequence recognition by cytosine DNA methyltransferases. EMBO J9:1007–1013
    [Google Scholar]
  61. Wilkinson S., Young M.. 1994; Targeted integration of genes into the Clostridium acetobutylicum chromosome. Microbiology140:89–95[CrossRef]
    [Google Scholar]
  62. Williams D. R., Young D. I., Oultram J. D., Minton N. P., Young M.. 1990a; Development and optimization of conjugative plasmid transfer from Escherichia coli to Clostridium acetobutylicum NCIB 8052. In Clinical and Molecular Aspects of Anaerobes pp.239–246Edited by Boriello S. P.. Petersfield, UK: Wrightson Biomedical;
    [Google Scholar]
  63. Williams D. R., Young D. I., Young M.. 1990b; Conjugative plasmid transfer from Escherichia coli to Clostridium acetobutylicum. J Gen Microbiol136:819–826[CrossRef]
    [Google Scholar]
  64. Woolley R. C., Pennock A., Ashton R. J., Davies A., Young M.. 1989; Transfer of Tn1545 and Tn916 to Clostridium acetobutylicum. Plasmid22:169–174[CrossRef]
    [Google Scholar]
  65. Young M.. 1993a; Development and exploitation of conjugative gene transfer in clostridia. In The Clostridia and Biotechnology pp.99–117Edited by Woods D. R.. Boston: Butterworth-Heinemann;
    [Google Scholar]
  66. Young M.. 1993b; Conjugative gene transfer in clostridia. In Genetics and Molecular Biology of Anaerobic Bacteria pp.98–110Edited by Sebald M.. New York: Springer;
    [Google Scholar]
  67. Young M., Cole S. T.. 1993; Clostridium. In Bacillus subtilis and Other Gram-positive Bacteria: Biochemistry, Physiology, and Molecular Genetics pp.35–52Edited by Sonenshein A. L., Hoch J. A., Losick R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  68. Young M., Ehrlich S. D.. 1989; Stability of reiterated sequences in the Bacillus subtilis chromosome. J Bacteriol171:2653–2656
    [Google Scholar]
  69. Young D. I., Williams D. R., Young M.. 1993; Evidence for transfer of a single DNA strand during IncP-mediated conjugative mobilization of plasmids from E. coli to Gram-positive bacteria. In DNA Transfer and Gene Expression in Micro-organisms pp.131–135Edited by Balla E., Berencsi G., Szentirmai A.. Andover, UK: Intercept;
    [Google Scholar]
  70. Young D. I., Evans V. J., Jefferies J. R., Jennert K. C. B., Phillips Z. E. V., Ravagnani A., Young M.. 1999; Genetic methods in clostridia. Methods Microbiol29:191–207
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-12-3071
Loading
/content/journal/micro/10.1099/00221287-146-12-3071
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error