1887

Abstract

can utilize the purine bases adenine, hypoxanthine and xanthine as nitrogen sources. The utilization of guanine as a nitrogen source is reported here. The first step is the deamination of guanine to xanthine catalysed by guanine deaminase (GDEase). To isolate mutants defective in GDEase activity, a collection of mutant strains was screened for strains unable to use guanine as a nitrogen source. The strain BFA1819 () showed the expected phenotype and no GDEase activity could be detected in this strain. A new name for , namely , is proposed. The gene encodes a 156 amino acid polypeptide and was preceded by a promoter sequence that is recognized by the σ form of RNA polymerase. High levels of GDEase were found in cells grown with purines and intermediary compounds of the purine catabolic pathway as nitrogen sources. Allantoic acid, most likely, is a low molecular mass inducer molecule. The level of GDEase was found to be subjected to global nitrogen control exerted by the GlnA/TnrA-dependent signalling pathway. The two regulatory proteins of this pathway, TnrA and GlnR, indirectly and positively affected expression. This is the first instance of a gene whose expression is positively regulated by GlnR. The GDEase amino acid sequence shows no homology with the mammalian enzyme. In agreement with this are the different physiological roles for the two enzymes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-12-3061
2000-12-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/12/1463061a.html?itemId=/content/journal/micro/10.1099/00221287-146-12-3061&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  2. Ashihara H., Crozier A. 1999; Biosynthesis and metabolism of caffeine and related purine alkaloids in plants. Adv Bot Res 30:118–205
    [Google Scholar]
  3. Atkinson M. R., Fisher S. 1991; Identification of genes and gene products whose expression is activated during nitrogen-limited growth in Bacillus subtilis. J Bacteriol 173:23–27
    [Google Scholar]
  4. Bairoch A., Bucher P., Hofman K. 1997; The PROSITE database, its status in 1997. Nucleic Acid Res 25:217–221 [CrossRef]
    [Google Scholar]
  5. Bhattacharya S., Navaratnam N., Morrison J. R., Scott J. 1994; Cytosine nucleoside/nucleotide deaminases and apolipoprotein B mRNA editing. Trends Biochem Sci 19:105–106 [CrossRef]
    [Google Scholar]
  6. Bongaerts G. P. A., Uitzetter J., Brouns R., Vogels G. D. 1978; Uricase of Bacillus fastidiosus, properties and regulation of synthesis. Biochim Biophys Acta 527:348–358 [CrossRef]
    [Google Scholar]
  7. Brown S. W., Sonenshein A. B. 1996; Autogenous regulation of the Bacillus subtilis glnRAoperon. J Bacteriol 178:2450–2454
    [Google Scholar]
  8. Christiansen L. C., Schou S., Nygaard P., Saxild H. H. 1997; Xanthine metabolism in Bacillus subtilis: characterization of the xpt-pbuX operon and evidence for purine- and nitrogen-controlled expression of genes involved in xanthine salvage and catabolism. J Bacteriol 179:2540–2550
    [Google Scholar]
  9. Cruz-Ramos H., Glaser P., Wray L. V., Fisher S. H. 1997; The Bacillus subtilis ureABC operon. J Bacteriol 179:3371–3373
    [Google Scholar]
  10. DeMoll E., Auffenberg T. 1993; Purine metabolism in Methanococcus vannielii. J Bacteriol 175:5754–5761
    [Google Scholar]
  11. Erbs P., Exinger F., Jund R. 1997; Characterization of the Saccharomyces cerevisiae FCY1 gene encoding cytosine deaminase and its homologue FCA1 of Candida albicans. Curr Genet 31:1–6 [CrossRef]
    [Google Scholar]
  12. Fisher S. 1999; Regulation of nitrogen metabolism in Bacillus subtilis: vive la différence!. Mol Microbiol 32:223–232 [CrossRef]
    [Google Scholar]
  13. Krug E. C., Marr J. J., Berens R. L. 1989; Purine metabolism in Toxoplasma gondii. J Biol Chem 264:10601–10607
    [Google Scholar]
  14. Kunst F., Ogasawara N., Moszer I.148 other authors 1997; The complete genome sequence of the Gram-positive bacterium. Bacillus subtilis. Nature 390:249–256 [CrossRef]
    [Google Scholar]
  15. Leimkühler S., Kern M., Solomon P. S., McEwan A. G., Schwarz G., Mendel R. R., Klipp W. 1998; XDHase from the phototrophic purple bacterium Rhodobacter capsulatus is more similar to its eukaryotic counterparts than to prokaryotic enzymes. Mol Microbiol 27:853–869 [CrossRef]
    [Google Scholar]
  16. Magill C. W., Sabina R. L., Garber T. L., Magill J. M. 1982; Guanine uptake and metabolism in Neurospora crassa. J Bacteriol 149:941–947
    [Google Scholar]
  17. Nygaard P. 1983; Utilization of preformed purine bases and nucleosides. In Metabolism of Nucleotides, Nucleosides and Nucleobases in Microorganisms pp. 27–93Edited by Munch-Petersen A. New York: Academic Press;
    [Google Scholar]
  18. Nygaard P. 1993; Purine and pyrimidine salvage pathways. In Bacillus subtilis and Other Gram-positive Bacteria pp. 359–378Edited by Sonenshein A. L., Hoch J. A., Losick R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  19. Nygaard P., Duckert P., Saxild H. H. 1996; Role of adenine deaminase in purine salvage and nitrogen metabolism and characterization of the ade gene in Bacillus subtilis. J Bacteriol 178:846–853
    [Google Scholar]
  20. Saxild H. H., Nygaard P. 1987; Genetic and physiological characterization of Bacillus subtilis mutants resistant to purine analogs. J Bacteriol 169:2977–2983
    [Google Scholar]
  21. Saxild H. H., Jacobsen J. H., Nygaard P. 1995; Functional analysis of the Bacillus subtilis purT gene encoding formate-dependent glycinamide ribonucleotide transformylase. Microbiology 141:2211–2218 [CrossRef]
    [Google Scholar]
  22. Schreier H. J. 1993; Biosynthesis of glutamine and glutamate and the assimilation of ammonia. In Bacillus subtilis and Other Gram-positive Bacteria pp. 281–298Edited by Sonenshein A. L., Hoch J. A., Losick R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  23. Stuer-Lauridsen B., Nygaard P. 1998; Purine salvage in two halophilic archaea: characterization of salvage pathways and isolation of mutants resistant to purine analogs. J Bacteriol 180:457–463
    [Google Scholar]
  24. Vagner V., Dervyn E., Ehrlich D. 1998; A vector for systematic gene inactivation in Bacillus subtilis. Microbiology 144:3097–3104 [CrossRef]
    [Google Scholar]
  25. Vogels G. D., van der Drift C. 1976; Degradation of purines and pyrimidines by microorganisms. Bacteriol Rev 40:403–468
    [Google Scholar]
  26. Wipat A., Harwood C. 1999; The Bacillus subtilis genome sequence: the molecular blueprint of a soil bacterium. . FEMS Microbiol Ecol 28:1–9 [CrossRef]
    [Google Scholar]
  27. Wray L. V., Ferson A. E., Rohrer K., Fisher S. H. 1996; TnrA, a transcription factor required for global nitrogen regulation in Bacillus subtilis. Proc Natl Acad Sci USA 93:8841–8845 [CrossRef]
    [Google Scholar]
  28. Wray L. V. Jr, Ferson A. E., Fisher S. H. 1997; Expression of the Bacillus subtilis ureABC operon is controlled by multiple regulatory factors including CodY, GlnR, TnrA, and Spo0H. . J Bacteriol 179:5494–5501
    [Google Scholar]
  29. Wray L. V. Jr, Zalieckas J. M., Fisher S. H. 2000; Purification and in vitro activities of the Bacillus subtilis TnrA transcription factor. J Mol Biol 300:29–40 [CrossRef]
    [Google Scholar]
  30. Yuan G., Bin J. C., McKay D. J., Snyder F. F. 1999; Cloning and characterization of human guanine deaminase. J Biol Chem 274:8175–8180 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-12-3061
Loading
/content/journal/micro/10.1099/00221287-146-12-3061
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error