1887

Abstract

Haemolysis of erythrocytes from different species (sheep, bovine, swine and human), caused by various combinations of phosphatidylcholine (PC)-preferring phospholipase C (PC-PLC), sphingomyelinase (SMase) and the three-component, pore-forming toxin haemolysin BL (HBL) from was analysed. The lytic potency of HBL did not correlate with phospholipid (PL) content, but lysis by the individual or combined enzymes did. SMase alone lysed ruminant erythrocytes, which contain 46–53% sphingomyelin (SM). The cooperative action of PC-PLC and SMase was needed to lyse swine and human erythrocytes (22–31% PC and 28–25% SM). SMase synergistically enhanced haemolysis caused by HBL for all erythrocytes tested, which all contained >25% SM. PC-PLC enhanced HBL haemolysis only in cells containing significant amounts of PC (swine, 22% PC; human, 31% PC). Unexpectedly, PC-PLC inhibited HBL lysis of sheep erythrocytes (<2% PC) and enhanced the discontinuous haemolysis pattern that is characteristic of HBL in sheep blood agar. Inhibition and pattern enhancement was abolished by washing PC-PLC-treated erythrocytes or by adding EDTA, suggesting that enzymic alteration of the membrane is not involved, but that zinc in the active site is required, perhaps to facilitate binding. These observations highlight the potential for cooperative and synergistic interactions among virulence factors in infections and dependence of these effects on tissue composition.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-12-3033
2000-12-01
2020-09-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/12/1463033a.html?itemId=/content/journal/micro/10.1099/00221287-146-12-3033&mimeType=html&fmt=ahah

References

  1. Agaisse H., Gominet M., Økstad O. A., Kolstø A. B., Lereclus D.. 1999; PlcR is a pleiotropic regulator of extracellular virulence factor gene expression in Bacillus thuringiensis. Mol Microbiol32:1043–1053[CrossRef]
    [Google Scholar]
  2. Baida G. E., Kuzmin N. P.. 1995; Cloning and primary sequence of a new hemolysin gene from Bacillus cereus. Biochim Biophys Acta1246:151–154[CrossRef]
    [Google Scholar]
  3. Bashford C. L., Alder G. M., Menestrina G., Micklem K. J., Murphy J. J., Pasternak C. A.. 1986; Membrane damage by hemolytic viruses, toxins, complement, and other cytotoxic agents. A common mechanism blocked by divalent cations. J Biol Chem261:9300–9308
    [Google Scholar]
  4. Beecher D. J., Macmillan J. D.. 1990; A novel bicomponent hemolysin from Bacillus cereus. Infect Immun58:2220–2227
    [Google Scholar]
  5. Beecher D. J., Wong A. C. L.. 1994a; Identification of hemolysin BL-producing Bacillus cereus isolates by a discontinuous hemolytic pattern in blood agar. . Appl Environ Microbiol60:1646–1651
    [Google Scholar]
  6. Beecher D. J., Wong A. C. L.. 1994b; Improved purification and characterization of hemolysin BL: a hemolytic dermonecrotic vascular permeability factor from Bacillus cereus. Infect Immun62:980–986
    [Google Scholar]
  7. Beecher D. J., Wong A. C. L.. 1997; Tripartite hemolysin BL from Bacillus cereus: hemolytic analysis of component interactions and a model for its characteristic paradoxical zone phenomenon. J Biol Chem272:233–239[CrossRef]
    [Google Scholar]
  8. Beecher D. J., Pulido J. S., Barney N. P., Wong A. C. L.. 1995a; Extracellular virulence factors in Bacillus cereus endophthalmitis: methods and implication of involvement of hemolysin BL. Infect Immun63:632–639
    [Google Scholar]
  9. Beecher D. J., Schoeni J. L., Wong A. C. L.. 1995b; Enterotoxic activity of hemolysin BL from Bacillus cereus. Infect Immun63:4423–4428
    [Google Scholar]
  10. Bernheimer A. W.. 1996; Some aspects of the history of membrane damaging toxins. Med Microbiol Immunol185:59–63[CrossRef]
    [Google Scholar]
  11. Bernheimer A. W., Grushoff P.. 1967; Cereolysin: production, purification and partial characterization. J Gen Microbiol46:143–150[CrossRef]
    [Google Scholar]
  12. Budarina Z. I., Sinev M. A., Mayorov S. G., Tomashevski A. Y., Shmelev I. V., Kuzmin N. P.. 1994; Hemolysin II is more characteristic of Bacillus thuringiensis than Bacillus cereus. Arch Microbiol161:252–257
    [Google Scholar]
  13. Cajal Y., Jain M. K.. 1997; Synergism between mellitin and phospholipase A(2) from bee venom – apparent activation by intervesicle exchange of phospholipids. Biochemistry36:3882–3893[CrossRef]
    [Google Scholar]
  14. Christie R., Atkins N. E., Munch-Petersen E.. 1944; A note on a lytic phenomenon shown by group B streptococci. Aust J Exp Biol Med Sci22:197–200[CrossRef]
    [Google Scholar]
  15. Cowell J. L., Grushoff-Kosyk P. S., Bernheimer A. W.. 1976; Purification of cereolysin and the electrophoretic separation of the active (reduced) and inactive (oxidized) forms of the purified toxin. Infect Immun14:144–154
    [Google Scholar]
  16. Crowell K. M., Lutz F.. 1989; Pseudomonas aeruginosa cytotoxin: the influence of sphingomyelin on binding and cation permeability increase in mammalian erythrocytes. Toxicon531:540
    [Google Scholar]
  17. Drobniewski F. A.. 1993; Bacillus cereus and related species. Clin Microbiol Rev6:324–338
    [Google Scholar]
  18. Fehrenbach F. J., Jürgens D.. 1991; Cooperative membrane-active (lytic) processes. In Sourcebook of Bacterial Protein Toxins pp.187–213Edited by Alouf J. E., Freer J. H.. London: Academic Press;
    [Google Scholar]
  19. Gilmore M. S., Cruz-Rodz A. L., Leimeister-Wächter M., Kreft J., Goebel W.. 1989; A Bacillus cereus cytolytic determinant, cereolysin AB, which comprises the phospholipase C and sphingomyelinase genes: nucleotide sequence and genetic linkage. J Bacteriol171:744–753
    [Google Scholar]
  20. Little C.. 1978; Conformational studies on phospholipase C from Bacillus cereus. The effect of urea on the enzyme. Biochem J175:977–986
    [Google Scholar]
  21. Little C., Johansen S.. 1979; Unfolding and refolding of phospholipase C from Bacillus cereus in solutions of guanidinium chloride. Biochem J179:509–514
    [Google Scholar]
  22. Möllby R.. 1978; Bacterial phospholipases. In Bacterial Toxins and Cell Membranes pp.367–424Edited by Jeljaszewicz J., Wadström T.. London: Academic Press;
    [Google Scholar]
  23. Ryan P. A., Macmillan J. D., Zilinskas B. A.. 1997; Molecular cloning and characterization of the genes encoding the L1 and L2 components of hemolysin BL from Bacillus cereus. J Bacteriol179:2551–2556
    [Google Scholar]
  24. Sinev M. A., Budarina Z. I., Gavrilenko I. V., Tomashevskii A. I., Kuz’min N. P.. 1993; Evidence for existence of Bacillus cereus hemolysin II: cloning of hemolysin II genetic determinant. Mol Biol Mosk27:1218–1229
    [Google Scholar]
  25. Slein M. W., Logan G. F.. 1965; Characterization of the phospholipases of Bacillus cereus. J Bacteriol90:70–81
    [Google Scholar]
  26. Tapsall J. W., Phillips E. A.. 1984; Streptococcus pyogenes streptolysin O as a cause of false-positive CAMP reactions. J Clin Microbiol19:534–537
    [Google Scholar]
  27. Tomita M., Tagchi R., Ikezawa H.. 1991; Sphingomyelinase of Bacillus cereus as a bacterial hemolysin. J Toxicol Tox Rev10:169–207[CrossRef]
    [Google Scholar]
  28. Zwaal R. F. A., Roelofsen B., Colley C. M.. 1973; Localizaton of red cell membrane constituents. Biochim Biophys Acta30:159–182
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-12-3033
Loading
/content/journal/micro/10.1099/00221287-146-12-3033
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error