1887

Abstract

The EMBL accession numbers for the sequences reported in this paper are AJ271898AJ271902 for the strains Rob6, Rob8 and Rob23 and the strains Rob18 and Rob20, respectively.

Lack of knowledge exists regarding the diversity of rhizobial strains nodulating black locust ( L.), which is a neophytic tree species widely distributed in Europe. Seventeen rhizobial strains isolated from nodules of black locust at a German location were examined by phenotypic characterization and 16S rDNA analysis. The isolates were classified in nine 16S rDNA genotypes using a set of seven endonucleases. Based on RFLP analysis and sequencing, the strains were shown to belong to the genera (76%) and (24%). Five genotypes were identical to the species , , , and . A strong similarity between the 16S rDNA sequence of another two genotypes and (999%) as well as the strain R88b (998%) was found. The two remaining genotypes were classified in the genus , without a significant relationship at the species level. Comparing isolates nodulating and , a parallel picture of phylogenetic diversity was detected with a range of phylogenetically different rhizobia and dominating. For this study, 18 rhizobial strains which had originally been isolated from a forest in Maryland where black locust is native were additionally analysed. Results revealed seven genotypes all belonging to the genus , with four genotypes identical to the isolates from the German sampling location. Whereas the genotype identical to dominated within the strains obtained from the German location, the dominance of a genotype identical to was found among the strains from the native location. Summarizing data from both locations, was nodulated with various genomic species, most of which belonged to the genus . Concerning phenotypic features such as growth rate, pH tolerance or use of certain carbohydrates, most isolates corresponded to described species and genera. However, there were differences in salt tolerance between these isolates and the corresponding reference strains. Overall, the results demonstrated a high phenotypic and phylogenetic diversity of rhizobial strains nodulating . This may be a characteristic of neophytic and other widely spread legumes and may contribute to the success of black locust as a pioneer tree species for the temperate zone.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-11-2997
2000-11-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/11/1462997a.html?itemId=/content/journal/micro/10.1099/00221287-146-11-2997&mimeType=html&fmt=ahah

References

  1. Amarger N., Bours M., Revoy F., Allard R., Laguerre G. 1994; Rhizobium tropici nodulates field-grown Phaseolus vulgaris in France. Plant Soil 161:147–156 [CrossRef]
    [Google Scholar]
  2. Amarger N., Macheret V., Laguerre G. 1997; Rhizobium gallicum sp. nov. and Rhizobium giardinii sp. nov. from Phaseolus vulgaris nodules. Int J Syst Bacteriol 47:996–1006 [CrossRef]
    [Google Scholar]
  3. Arnold W., Pühler A. 1988; A family of high-copy-number plasmid vectors with single end-label sites for rapid nucleotide sequencing. Gene 70:171–179 [CrossRef]
    [Google Scholar]
  4. Balla I., Vertesy J., Koves-Pechy K., Voros I., Bujtas Z., Biro B. 1998; Acclimation results of micropropagated black locust (Robinia pseudoacacia L.) improved by symbiotic micro-organisms. Plant Cell Tissue Organ Cult 52:113–115 [CrossRef]
    [Google Scholar]
  5. Batzli J. M., Graves W. R., van Berkum P. 1992; Diversity among rhizobia effective with Robinia pseudoacacia L. Appl Environ Microbiol 58:2137–2143
    [Google Scholar]
  6. Chen W. X., Yan G. H., Li J. L. 1988; Numerical taxonomic study of fast-growing soybean rhizobia and a proposal that Rhizobium fredii be assigned to Sinorhizobium gen. nov. Int J Syst Bacteriol 38:392–397 [CrossRef]
    [Google Scholar]
  7. Cilia V., Lafay B., Christen R. 1996; Sequence heterogeneities among 16S ribosomal RNA sequences, and their effect on phylogenetic analyses at the species level. Mol Biol Evol 13:451–461 [CrossRef]
    [Google Scholar]
  8. Dreyfus B., Garcia J. L., Gillis M. 1988; Characterization of Azorhizobium caulinodans gen. nov., sp. nov., a stem-nodulating nitogen-fixing bacterium isolated from Sesbania rostrata. Int J Syst Bacteriol 38:89–98 [CrossRef]
    [Google Scholar]
  9. Elkan G. H., Bunn C. R. 1992; The rhizobia. In The Prokaryotes: a Handbook on the Biology of Bacteria – Ecophysiology, Isolation, Identification, Applications pp. 2197–2210Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
  10. Felsenstein J. 1993 phylip (phylogeny interference package), 3.5c edition University of Washington; Seattle, USA:
    [Google Scholar]
  11. Fox R. T. V. 1993 Principles of Diagnostic Techniques in Plant Pathology Wallingford, UK: CAB International;
    [Google Scholar]
  12. Gruber K. F., Hanover J. W. 1992; An effective protocol for large scale micropropagation of black locust (Robinia pseudoacacia). In Black Locust: Biology, Culture, and Utilization pp. 126–135Edited by Hanover J. W., Miller K., Plesko S. East Lansing: Michigan State University Press;
    [Google Scholar]
  13. Han S. F. 1996; Screening efficient strains of locust (Robinia pseudoacacia) nodule bacteria. J Nanjing Forestry Univ 20:73–76
    [Google Scholar]
  14. Hanover J. W. 1992; Black locust: a historical and future perspective. In Black Locust: Biology, Culture, and Utilization pp. 7–18Edited by Hanover J. W., Miller K., Plesko S. East Lansing: Michigan State University Press;
    [Google Scholar]
  15. Haukka K., Lindström K., Young J. P. W. 1998; Three phylogenetic groups of nodA and nifH genes in Sinorhizobium and Mesorhizobium isolates from leguminous trees growing in Africa and Latin America. Appl Environ Microbiol 64:419–426
    [Google Scholar]
  16. Herrera M. A., Salamanca C. P., Barea J. M. 1993; Inoculation of woody legumes with selected arbuscular mycorrhizal fungi and rhizobia to recover desertified Mediterranean ecosystems. Appl Environ Microbiol 59:129–133
    [Google Scholar]
  17. Hoffmann G. 1964; Effektivität und Wirtsspezifität der Knöllchenbakterien von Robinia pseudoacacia L. Arch Forstwesen 13:563–576
    [Google Scholar]
  18. Jarvis B. D. W., Sivakumaran S., Tighe S. W., Gillis M. 1996; Identification of Agrobacterium and Rhizobium species based on cellular fatty acid composition. Plant Soil 184:143–158 [CrossRef]
    [Google Scholar]
  19. Jarvis B. D. W., van Berkum P., Chen W. X., Nour S. M., Fernandez M. P., Cleyet-Marel J. C., Gillis M. 1997; Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov. Int J Syst Bacteriol 47:895–898 [CrossRef]
    [Google Scholar]
  20. Jordan D. C. 1982; Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants. Int J Syst Bacteriol 32:136–139 [CrossRef]
    [Google Scholar]
  21. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  22. Lafay B., Burdon J. J. 1998; Molecular diversity of rhizobia occurring on native shrubby legumes in southeastern Australia. Appl Environ Microbiol 64:3989–3997
    [Google Scholar]
  23. Laguerre G., Fernandez M. P., Edel V., Normand P., Amarger N. 1993; Genomic heterogeneity among French Rhizobium strains isolated from Phaseolus vulgaris L. Int J Syst Bacteriol 43:761–767 [CrossRef]
    [Google Scholar]
  24. Laguerre G., Allard M. R., Revoy F., Amarger N. 1994; Rapid identification of rhizobia by restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA genes. Appl Environ Microbiol 60:56–63
    [Google Scholar]
  25. de Lajudie P., Willems A., Pot B.7 other authors 1994; Polyphasic taxonomy of rhizobia: emendation of the genus Sinorhizobium and description of Sinorhizobium meliloti comb. nov., Sinorhizobium saheli comb. nov., and Sinorhizobium teranga sp. nov. Int J Syst Bacteriol 44:715–733 [CrossRef]
    [Google Scholar]
  26. Lyr H. 1992; Die N2-Bindung durch Leguminosen. In Physiologie und Ökologie der Gehölze pp. 133–135Edited by Lyr H., Fiedler H. J., Tranquillini W. Jena: Fischer;
    [Google Scholar]
  27. Martinez-Romero E., Segovia L., Mercante F. M., Franco A. A., Graham P., Pardo M. A. 1991; Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. Int J Syst Bacteriol 41:417–426 [CrossRef]
    [Google Scholar]
  28. Pérez-Ramirez N. O., Rogel-Hernández M. A., Wang E. T., Martinez-Romero E. 1998; Seeds of Phaseolus vulgaris bean carry Rhizobium etli. FEMS Microbiol Ecol 26:289–296 [CrossRef]
    [Google Scholar]
  29. Perret X., Staehelin C., Broughton W. J. 2000; Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev 64:180–201 [CrossRef]
    [Google Scholar]
  30. Qian D., Allen F. L., Stacey G., Gresshoff P. M. 1996; Plant genetic study of restricted nodulation in soybean. Crop Sci 36:243–249 [CrossRef]
    [Google Scholar]
  31. Röhm M., Werner D. 1992; Robinia pseudoacacia-Rhizobium symbiosis: isolation and characterization of a fast nodulating and efficiently nitrogen fixing Rhizobium strain. Nitrogen Fixing Tree Res Reports 10:193–197
    [Google Scholar]
  32. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  33. Schäfer B., Werner D. 1993; Nodulation of Robinia pseudoacacia by two Rhizobium strains. Nitrogen Fixing Tree Res Rep 11:121–126
    [Google Scholar]
  34. Segovia L., Young J. P. W., Martinez-Romero E. 1993; Reclassification of American Rhizobium leguminosarum biovar phaseoli type I strains as Rhizobium etli sp. nov. Int J Syst Bacteriol 43:374–377 [CrossRef]
    [Google Scholar]
  35. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  36. Sullivan J. T., Eardly B. D., van Berkum P., Ronson C. W. 1996; Four unnamed species of nonsymbiotic rhizobia isolated from the rhizosphere of Lotus corniculatus. Appl Environ Microbiol 62:2818–2825
    [Google Scholar]
  37. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  38. Thorne D. W., Walker R. H. 1936; The influence of seed inoculation upon the growth of black locust seedlings. J Am Soc Agron 28:28–34 [CrossRef]
    [Google Scholar]
  39. Ulrich A., Müller T. 1998; Heterogeneity of plant-associated streptococci as characterised by phenotypic features and restriction analysis of PCR-amplified 16S rDNA. J Appl Microbiol 84:293–303 [CrossRef]
    [Google Scholar]
  40. Wang E. T., van Berkum P., Sui X. H., Beyene D., Chen W. X., Martinez-Romero E. 1999; Diversity of rhizobia associated with Amorpha fruticosa isolated from Chinese soils and description of Mesorhizobium amorphae sp. nov. Int J Syst Bacteriol 49:51–65 [CrossRef]
    [Google Scholar]
  41. Wayne L. G., Brenner D. J., Colwell R. R.9 other authors 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  42. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703
    [Google Scholar]
  43. Wilson J. K. 1939 Leguminous Plants and their Associated Organisms Cornell University Agricultural Experiment Station memoir 221; Ithaca, NY: Cornell University Press;
    [Google Scholar]
  44. Woese C. R. 1987; Bacterial evolution. Microbiol Rev 51:221–271
    [Google Scholar]
  45. Young J. P. W. 1996; Phylogeny and taxonomy of rhizobia. Plant Soil 186:45–52 [CrossRef]
    [Google Scholar]
  46. Young J. P. W., Haukka K. E. 1996; Diversity and phylogeny of rhizobia. New Phytol 133:87–94 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-11-2997
Loading
/content/journal/micro/10.1099/00221287-146-11-2997
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error