1887

Abstract

The GenBank accession number for the sequence reported in this paper is AF200304.

The nucleotide sequence of the complete gene, encoding a novel multidomain xylanase XynA of ‘’, was determined by genomic-walking PCR. The putative XynA comprises an N-terminal domain (D1), recently identified as a xylan-binding domain (XBD), homologous to non-catalytic thermostabilizing domains from other xylanases. D1 is followed by a xylanase catalytic domain (D2) homologous to family 10 glycosyl hydrolases. Downstream of this domain two cellulose-binding domains (CBD), D3 and D4, were found linked via proline-threonine (PT)-rich peptides. Both CBDs showed sequence similarity to family IIIb CBDs. Upstream of an incomplete open reading frame was identified, encoding a putative C-terminal CBD homologous to family IIIb CBDs. Two expression plasmids encoding the N-terminal XBD plus the catalytic domain (XynAd1/2) and the xylanase catalytic domain alone (XynAd2) were constructed and the biochemical properties of the recombinant enzymes compared. The absence of the XBD resulted in a decrease in thermostability of the catalytic domain from 70 °C (XynAd1/2) to 60 °C (XynAd2). Substrate-specificity experiments and analysis of the main products released from xylan hydrolysis indicate that both recombinant enzymes act as endo-1,4-β-xylanases, but differ in their ability to cleave small xylooligosaccharides.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-11-2947
2000-11-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/11/1462947a.html?itemId=/content/journal/micro/10.1099/00221287-146-11-2947&mimeType=html&fmt=ahah

References

  1. Bergquist, P. L., Gibbs, M. D., Morris, D. D., Te’o, V. S. J., Saul, D. J. & Morgan, H. W. ( 1999; ). Molecular diversity of thermophilic cellulolytic and hemicellulolytic bacteria. FEMS Microbiol Ecol 28, 99-110.[CrossRef]
    [Google Scholar]
  2. Bernfeld, P. ( 1955; ). Amylases α and β. Methods Enzymol 1, 149-158.
    [Google Scholar]
  3. Biely, P. ( 1985; ). Microbial xylanolytic systems. Trends Biotechnol 3, 286-290.[CrossRef]
    [Google Scholar]
  4. Blanco, A., Dı́az, P., Zueco, J., Parascandola, P. & Pastor, F. I. J. ( 1999; ). A multidomain xylanase from a Bacillus sp. with a region homologous to thermostabilizing domains of thermophilic enzymes. Microbiology 145, 2163-2170.[CrossRef]
    [Google Scholar]
  5. Blum, D. L., Kataeva, I. A., Li, X.-L. & Ljungdahl, L. G. ( 2000; ). Feruloyl esterase activity of the Clostridium thermocellum cellulosome can be attributed to previously unknown domains of XynY and XynZ. J Bacteriol 182, 1346-1351.[CrossRef]
    [Google Scholar]
  6. Britton, H. T. S. & Robinson, R. A. ( 1931; ). Universal buffer solutions and the dissociation constant of veronal. J Chem Soc 1931, 1456-1462.
    [Google Scholar]
  7. Bronnenmeier, K., Kundt, K., Riedel, K., Schwarz, W. H. & Staudenbauer, W. L. ( 1997; ). Structure of the Clostridium stercorarium gene celY encoding the exo-1,4-β-glucanase Avicelase II. Microbiology 143, 891-898.[CrossRef]
    [Google Scholar]
  8. Clarke, J. H., Davidson, K., Gilbert, H. J., Fontes, C. M. G. A. & Hazlewood, G. P. ( 1996; ). A modular xylanase from mesophilic Cellulomonas fimi contains the same cellulose-binding and thermostabilizing domains as xylanases from thermophilic bacteria. FEMS Microbiol Lett 139, 27-35.[CrossRef]
    [Google Scholar]
  9. Croft, J. E., Love, D. R. & Bergquist, P. L. ( 1987; ). Expression of leucine genes from an extremely thermophilic bacterium in Escherichia coli. Mol Gen Genet 210, 490-497.[CrossRef]
    [Google Scholar]
  10. Devereux, J., Haeberli, P. & Smithies, O. ( 1984; ). A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12, 387-395.[CrossRef]
    [Google Scholar]
  11. Dwivedi, P. P., Gibbs, M. D., Saul, D. J. & Bergquist, P. L. ( 1996; ). Cloning, sequencing and overexpression in Escherichia coli of a xylanase gene, xynA from the thermophilic bacterium Caldicellulosiruptor Rt8B.4. Appl Environ Microbiol 45, 86-93.
    [Google Scholar]
  12. Flint, H. J., Martin, J., McPherson, C. A., Daniel, A. S. & Zhang, J. X. ( 1993; ). A bifunctional enzyme, with separate xylanase and β(1,3–1,4)-glucanase domains, encoded by the xynD gene of Ruminococcus flavefaciens. J Bacteriol 175, 2943-2951.
    [Google Scholar]
  13. Fontes, C. M. G. A., Hazlewood, G. P., Morag, E., Hall, J., Hirst, B. H. & Gilbert, H. J. ( 1995; ). Evidence for a general role for non-catalytic thermostabilizing domains in xylanases from thermophilic bacteria. Biochem J 307, 151-158.
    [Google Scholar]
  14. Gibbs, M. D., Reeves, R. A., Sunna, A. & Bergquist, P. L. ( 1999; ). Sequencing and expression of a β-mannanase gene from the extreme thermophile Dictyoglomus thermophilum Rt46B.1, and characteristics of the recombinant enzyme. Curr Microbiol 39, 351-357.[CrossRef]
    [Google Scholar]
  15. Gilkes, N. R., Henrissat, B., Kilburn, D. G., Miller, R. C. J. & Warren, R. A. J. ( 1991; ). Domains in microbial β-1,4-glycanases: sequence conservation, function, and enzyme families. Microbiol Rev 55, 303-315.
    [Google Scholar]
  16. Hansen, C. K., Diderichsen, B. & Jørgensen, P. L. ( 1992; ). celA from Bacillus lautus PL 236 encodes a novel cellulose-binding endo-β-1,4-glucanase. J Bacteriol 174, 3522-3531.
    [Google Scholar]
  17. Hayashi, H., Takagi, K. I., Fukumura, M., Kimura, T., Karita, S., Sakka, K. & Ohmiya, K. ( 1997; ). Sequence of xynC and properties of XynC, a major component of the Clostridium thermocellum cellulosome. J Bacteriol 179, 4246-4253.
    [Google Scholar]
  18. Henrissat, B. ( 1991; ). A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280, 309-316.
    [Google Scholar]
  19. Khanna, S. & Gauri ( 1993; ). Regulation, purification and properties of xylanase from Cellulomonas fimi. Enzyme Microb Technol 15, 990-995.[CrossRef]
    [Google Scholar]
  20. Kulkarni, N., Shendye, A. & Rao, M. ( 1999; ). Molecular and biotechnological aspects of xylanases. FEMS Microbiol Rev 23, 411-456.[CrossRef]
    [Google Scholar]
  21. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.[CrossRef]
    [Google Scholar]
  22. Lee, Y.-E., Lowe, S. E., Henrissat, B. & Zeikus, J. G. ( 1993; ). Characterization of the active site and thermostability regions of endoxylanase from Thermoanaerobacterium saccharolyticum B6A-RI. J Bacteriol 175, 5890-5898.
    [Google Scholar]
  23. MacKay, R. M., Lo, A., Willick, G., Zuker, M., Baird, S., Dove, M., Moranelli, F. & Seligy, V. ( 1986; ). Structure of a Bacillus subtilis endo-β-1,4-glucanase gene. Nucleic Acids Res 14, 9159-9170.[CrossRef]
    [Google Scholar]
  24. Morris, D. D., Reeves, R. A., Gibbs, M. D., Saul, D. J. & Bergquist, P. L. ( 1995; ). Correction of the β-mannanase domain of the celC pseudogene from Caldicellulosiruptor saccharolyticus and activity of the gene product on kraft pulp. Appl Environ Microbiol 61, 2262-2269.
    [Google Scholar]
  25. Morris, D. D., Gibbs, M. D., Chin, C. W. J., Koh, M.-H., Wong, K. K. Y., Allison, R. W., Nelson, P. J. & Bergquist, P. L. ( 1998; ). Cloning of the xynB gene from Dictyoglomus thermophilum strain Rt46B.1 and action of the gene product on kraft pulp. Appl Environ Microbiol 64, 1759-1765.
    [Google Scholar]
  26. Morris, D. D., Gibbs, M. D., Ford, M., Thomas, J. & Bergquist, P. L. ( 1999; ). Family 10 and 11 xylanase genes from Caldicellulosiruptor sp. strain Rt69B.1. Extremophiles 3, 103-111.[CrossRef]
    [Google Scholar]
  27. Reeves, R. A., Gibbs, M. D., Morris, D. D., Griffiths, K. R., Saul, D. J. & Bergquist, P. L. ( 2000; ). Sequencing and expression of additional xylanase genes from the hyperthermophile Thermotoga maritima FjSS3B.1. Appl Environ Microbiol 66, 1532-1537.[CrossRef]
    [Google Scholar]
  28. Saul, D. J., Williams, L. C., Grayling, R. A., Chamley, L. W., Love, D. R. & Bergquist, P. L. ( 1990; ). celB, a gene coding for a bifunctional cellulase from the extreme thermophile ‘‘Caldocellum saccharolyticum’’. Appl Environ Microbiol 56, 3117-3124.
    [Google Scholar]
  29. Schauder, B., Blöcker, H., Frank, R. & McCarthy, J. E. G. ( 1987; ). Inducible expression vectors incorporating the Escherichia coli atpE transcriptional initiation region. Gene 52, 279-283.[CrossRef]
    [Google Scholar]
  30. Sunna, A. & Antranikian, G. ( 1997; ). Xylanolytic enzymes from fungi and bacteria. Crit Rev Biotechnol 17, 39-67.[CrossRef]
    [Google Scholar]
  31. Sunna, A., Moracci, M., Rossi, M. & Antranikian, G. ( 1997; ). Glycosyl hydrolases from hyperthermophiles. Extremophiles 1, 2-13.[CrossRef]
    [Google Scholar]
  32. Sunna, A., Gibbs, M. D. & Bergquist, P. L. ( 2000a; ). The thermostabilizing domain of Caldibacillus cellulovorans xylanase XynA is a xylan binding domain. Biochem J 346, 583-586.[CrossRef]
    [Google Scholar]
  33. Sunna, A., Gibbs, M. D., Chin, C. W. J., Nelson, P. J. & Bergquist, P. L. ( 2000b; ). A gene encoding for a novel multidomain β-1,4-mannanase from Caldibacillus cellulovorans and action of the recombinant enzyme on kraft pulp. Appl Environ Microbiol 66, 664-670.[CrossRef]
    [Google Scholar]
  34. Teather, R. M. & Wood, P. J. ( 1982; ). Use of Congo Red polysaccharide interaction in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol 43, 777-780.
    [Google Scholar]
  35. Timell, T. E. ( 1967; ). Recent progress in the chemistry of wood hemicelluloses. Wood Sci Technol 1, 45-70.[CrossRef]
    [Google Scholar]
  36. Tomme, P., Warren, R. A. J., Miller, R. C. J., Kilburn, D. G. & Gilkes, N. R. ( 1995; ). Cellulose-binding domains: classification and properties. In Enzymatic Degradation of Insoluble Carbohydrates, pp. 142-163. Edited by J. N. Saddler & M. H. Penner. Washington, DC: American Chemical Society.
  37. Tormo, J., Lamed, R., Chirino, A. J., Morag, E., Bayer, E. A., Shoham, Y. & Steitz, T. A. ( 1996; ). Crystal structure of a bacterial family-III cellulose-binding domain: a general mechanism for attachment to cellulose. EMBO J 15, 5739-5751.
    [Google Scholar]
  38. Viikari, L. ( 1991; ). Xylanase enzymes promote pulp bleaching. Paper Timber 5, 384-389.
    [Google Scholar]
  39. Viikari, L., Kantelinen, A., Sundquist, J. & Linko, M. ( 1994; ). Xylanases in bleaching: from an idea to the industry. FEMS Microbiol Rev 13, 335-350.
    [Google Scholar]
  40. Winterhalter, C. & Liebl, W. ( 1995; ). Two extremely thermostable xylanases of the hyperthermophilic bacterium Thermotoga maritima MSB8. Appl Environ Microbiol 61, 1810-1815.
    [Google Scholar]
  41. Winterhalter, C., Heinrich, P., Candussio, A., Wich, G. & Liebl, W. ( 1995; ). Identification of a novel cellulose-binding domain within the multidomain 120 kDa xylanase XynA of the hyperthermophilic bacterium Thermotoga maritima. Mol Microbiol 15, 431-444.[CrossRef]
    [Google Scholar]
  42. Zhang, J. X., Martin, J. & Flint, H. J. ( 1994; ). Identification of non-catalytic conserved regions in xylanases encoded by the xynB and xynD genes of the cellulolytic rumen anaerobe Ruminococcus flavefaciens. Mol Gen Genet 245, 260-264.
    [Google Scholar]
  43. Zverlov, V., Piotukh, K., Dakhova, O., Velikodvorskaya, G. & Borris, R. ( 1996; ). The multidomain xylanase A of the hyperthermophilic bacterium Thermotoga neapolitana is extremely thermoresistant. Appl Microbiol Biotechnol 45, 245-247.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-11-2947
Loading
/content/journal/micro/10.1099/00221287-146-11-2947
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error