1887

Abstract

The GenBank accession number for the sequence reported in this paper is AF200304.

The nucleotide sequence of the complete gene, encoding a novel multidomain xylanase XynA of ‘’, was determined by genomic-walking PCR. The putative XynA comprises an N-terminal domain (D1), recently identified as a xylan-binding domain (XBD), homologous to non-catalytic thermostabilizing domains from other xylanases. D1 is followed by a xylanase catalytic domain (D2) homologous to family 10 glycosyl hydrolases. Downstream of this domain two cellulose-binding domains (CBD), D3 and D4, were found linked via proline-threonine (PT)-rich peptides. Both CBDs showed sequence similarity to family IIIb CBDs. Upstream of an incomplete open reading frame was identified, encoding a putative C-terminal CBD homologous to family IIIb CBDs. Two expression plasmids encoding the N-terminal XBD plus the catalytic domain (XynAd1/2) and the xylanase catalytic domain alone (XynAd2) were constructed and the biochemical properties of the recombinant enzymes compared. The absence of the XBD resulted in a decrease in thermostability of the catalytic domain from 70 °C (XynAd1/2) to 60 °C (XynAd2). Substrate-specificity experiments and analysis of the main products released from xylan hydrolysis indicate that both recombinant enzymes act as endo-1,4-β-xylanases, but differ in their ability to cleave small xylooligosaccharides.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-11-2947
2000-11-01
2020-04-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/11/1462947a.html?itemId=/content/journal/micro/10.1099/00221287-146-11-2947&mimeType=html&fmt=ahah

References

  1. Bergquist P. L., Gibbs M. D., Morris D. D., Te’o V. S. J., Saul D. J., Morgan H. W.. 1999; Molecular diversity of thermophilic cellulolytic and hemicellulolytic bacteria. FEMS Microbiol Ecol28:99–110[CrossRef]
    [Google Scholar]
  2. Bernfeld P.. 1955; Amylases α and β. Methods Enzymol1:149–158
    [Google Scholar]
  3. Biely P.. 1985; Microbial xylanolytic systems. Trends Biotechnol3:286–290[CrossRef]
    [Google Scholar]
  4. Blanco A., Dı́az P., Zueco J., Parascandola P., Pastor F. I. J.. 1999; A multidomain xylanase from a Bacillus sp. with a region homologous to thermostabilizing domains of thermophilic enzymes. Microbiology145:2163–2170[CrossRef]
    [Google Scholar]
  5. Blum D. L., Kataeva I. A., Li X.-L., Ljungdahl L. G.. 2000; Feruloyl esterase activity of the Clostridium thermocellum cellulosome can be attributed to previously unknown domains of XynY and XynZ. J Bacteriol182:1346–1351[CrossRef]
    [Google Scholar]
  6. Britton H. T. S., Robinson R. A.. 1931; Universal buffer solutions and the dissociation constant of veronal. J Chem Soc1931:1456–1462
    [Google Scholar]
  7. Bronnenmeier K., Kundt K., Riedel K., Schwarz W. H., Staudenbauer W. L.. 1997; Structure of the Clostridium stercorarium gene celY encoding the exo-1,4-β-glucanase Avicelase II. Microbiology143:891–898[CrossRef]
    [Google Scholar]
  8. Clarke J. H., Davidson K., Gilbert H. J., Fontes C. M. G. A., Hazlewood G. P.. 1996; A modular xylanase from mesophilic Cellulomonas fimi contains the same cellulose-binding and thermostabilizing domains as xylanases from thermophilic bacteria. FEMS Microbiol Lett139:27–35[CrossRef]
    [Google Scholar]
  9. Croft J. E., Love D. R., Bergquist P. L.. 1987; Expression of leucine genes from an extremely thermophilic bacterium in Escherichia coli. Mol Gen Genet210:490–497[CrossRef]
    [Google Scholar]
  10. Devereux J., Haeberli P., Smithies O.. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res12:387–395[CrossRef]
    [Google Scholar]
  11. Dwivedi P. P., Gibbs M. D., Saul D. J., Bergquist P. L.. 1996; Cloning, sequencing and overexpression in Escherichia coli of a xylanase gene, xynA from the thermophilic bacterium Caldicellulosiruptor Rt8B.4. Appl Environ Microbiol45:86–93
    [Google Scholar]
  12. Flint H. J., Martin J., McPherson C. A., Daniel A. S., Zhang J. X.. 1993; A bifunctional enzyme, with separate xylanase and β(1,3–1,4)-glucanase domains, encoded by the xynD gene of Ruminococcus flavefaciens. J Bacteriol175:2943–2951
    [Google Scholar]
  13. Fontes C. M. G. A., Hazlewood G. P., Morag E., Hall J., Hirst B. H., Gilbert H. J.. 1995; Evidence for a general role for non-catalytic thermostabilizing domains in xylanases from thermophilic bacteria. Biochem J307:151–158
    [Google Scholar]
  14. Gibbs M. D., Reeves R. A., Sunna A., Bergquist P. L.. 1999; Sequencing and expression of a β-mannanase gene from the extreme thermophile Dictyoglomus thermophilum Rt46B.1, and characteristics of the recombinant enzyme. Curr Microbiol39:351–357[CrossRef]
    [Google Scholar]
  15. Gilkes N. R., Henrissat B., Kilburn D. G., Miller R. C. J., Warren R. A. J.. 1991; Domains in microbial β-1,4-glycanases: sequence conservation, function, and enzyme families. Microbiol Rev55:303–315
    [Google Scholar]
  16. Hansen C. K., Diderichsen B., Jørgensen P. L.. 1992; celA from Bacillus lautus PL 236 encodes a novel cellulose-binding endo-β-1,4-glucanase. J Bacteriol174:3522–3531
    [Google Scholar]
  17. Hayashi H., Takagi K. I., Fukumura M., Kimura T., Karita S., Sakka K., Ohmiya K.. 1997; Sequence of xynC and properties of XynC, a major component of the Clostridium thermocellum cellulosome. J Bacteriol179:4246–4253
    [Google Scholar]
  18. Henrissat B.. 1991; A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J280:309–316
    [Google Scholar]
  19. Khanna S., Gauri. 1993; Regulation, purification and properties of xylanase from Cellulomonas fimi. Enzyme Microb Technol15:990–995[CrossRef]
    [Google Scholar]
  20. Kulkarni N., Shendye A., Rao M.. 1999; Molecular and biotechnological aspects of xylanases. FEMS Microbiol Rev23:411–456[CrossRef]
    [Google Scholar]
  21. Laemmli U. K.. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227:680–685[CrossRef]
    [Google Scholar]
  22. Lee Y.-E., Lowe S. E., Henrissat B., Zeikus J. G.. 1993; Characterization of the active site and thermostability regions of endoxylanase from Thermoanaerobacterium saccharolyticum B6A-RI. J Bacteriol175:5890–5898
    [Google Scholar]
  23. MacKay R. M., Lo A., Willick G., Zuker M., Baird S., Dove M., Moranelli F., Seligy V.. 1986; Structure of a Bacillus subtilis endo-β-1,4-glucanase gene. Nucleic Acids Res14:9159–9170[CrossRef]
    [Google Scholar]
  24. Morris D. D., Reeves R. A., Gibbs M. D., Saul D. J., Bergquist P. L.. 1995; Correction of the β-mannanase domain of the celC pseudogene from Caldicellulosiruptor saccharolyticus and activity of the gene product on kraft pulp. Appl Environ Microbiol61:2262–2269
    [Google Scholar]
  25. Morris D. D., Gibbs M. D., Chin C. W. J., Koh M.-H., Wong K. K. Y., Allison R. W., Nelson P. J., Bergquist P. L.. 1998; Cloning of the xynB gene from Dictyoglomus thermophilum strain Rt46B.1 and action of the gene product on kraft pulp. Appl Environ Microbiol64:1759–1765
    [Google Scholar]
  26. Morris D. D., Gibbs M. D., Ford M., Thomas J., Bergquist P. L.. 1999; Family 10 and 11 xylanase genes from Caldicellulosiruptor sp. strain Rt69B.1. Extremophiles3:103–111[CrossRef]
    [Google Scholar]
  27. Reeves R. A., Gibbs M. D., Morris D. D., Griffiths K. R., Saul D. J., Bergquist P. L.. 2000; Sequencing and expression of additional xylanase genes from the hyperthermophile Thermotoga maritima FjSS3B.1. Appl Environ Microbiol66:1532–1537[CrossRef]
    [Google Scholar]
  28. Saul D. J., Williams L. C., Grayling R. A., Chamley L. W., Love D. R., Bergquist P. L.. 1990; celB, a gene coding for a bifunctional cellulase from the extreme thermophile ‘‘Caldocellum saccharolyticum’’. Appl Environ Microbiol56:3117–3124
    [Google Scholar]
  29. Schauder B., Blöcker H., Frank R., McCarthy J. E. G.. 1987; Inducible expression vectors incorporating the Escherichia coli atpE transcriptional initiation region. Gene52:279–283[CrossRef]
    [Google Scholar]
  30. Sunna A., Antranikian G.. 1997; Xylanolytic enzymes from fungi and bacteria. Crit Rev Biotechnol17:39–67[CrossRef]
    [Google Scholar]
  31. Sunna A., Moracci M., Rossi M., Antranikian G.. 1997; Glycosyl hydrolases from hyperthermophiles. Extremophiles1:2–13[CrossRef]
    [Google Scholar]
  32. Sunna A., Gibbs M. D., Bergquist P. L.. 2000a; The thermostabilizing domain of Caldibacillus cellulovorans xylanase XynA is a xylan binding domain. Biochem J346:583–586[CrossRef]
    [Google Scholar]
  33. Sunna A., Gibbs M. D., Chin C. W. J., Nelson P. J., Bergquist P. L.. 2000b; A gene encoding for a novel multidomain β-1,4-mannanase from Caldibacillus cellulovorans and action of the recombinant enzyme on kraft pulp. Appl Environ Microbiol66:664–670[CrossRef]
    [Google Scholar]
  34. Teather R. M., Wood P. J.. 1982; Use of Congo Red polysaccharide interaction in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol43:777–780
    [Google Scholar]
  35. Timell T. E.. 1967; Recent progress in the chemistry of wood hemicelluloses. Wood Sci Technol1:45–70[CrossRef]
    [Google Scholar]
  36. Tomme P., Warren R. A. J., Miller R. C. J., Kilburn D. G., Gilkes N. R.. 1995; Cellulose-binding domains: classification and properties. In Enzymatic Degradation of Insoluble Carbohydrates pp.142–163Edited by Saddler J. N., Penner M. H.. Washington, DC: American Chemical Society;
    [Google Scholar]
  37. Tormo J., Lamed R., Chirino A. J., Morag E., Bayer E. A., Shoham Y., Steitz T. A.. 1996; Crystal structure of a bacterial family-III cellulose-binding domain: a general mechanism for attachment to cellulose. EMBO J15:5739–5751
    [Google Scholar]
  38. Viikari L.. 1991; Xylanase enzymes promote pulp bleaching. Paper Timber5:384–389
    [Google Scholar]
  39. Viikari L., Kantelinen A., Sundquist J., Linko M.. 1994; Xylanases in bleaching: from an idea to the industry. FEMS Microbiol Rev13:335–350
    [Google Scholar]
  40. Winterhalter C., Liebl W.. 1995; Two extremely thermostable xylanases of the hyperthermophilic bacterium Thermotoga maritima MSB8. Appl Environ Microbiol61:1810–1815
    [Google Scholar]
  41. Winterhalter C., Heinrich P., Candussio A., Wich G., Liebl W.. 1995; Identification of a novel cellulose-binding domain within the multidomain 120 kDa xylanase XynA of the hyperthermophilic bacterium Thermotoga maritima. Mol Microbiol15:431–444[CrossRef]
    [Google Scholar]
  42. Zhang J. X., Martin J., Flint H. J.. 1994; Identification of non-catalytic conserved regions in xylanases encoded by the xynB and xynD genes of the cellulolytic rumen anaerobe Ruminococcus flavefaciens. Mol Gen Genet245:260–264
    [Google Scholar]
  43. Zverlov V., Piotukh K., Dakhova O., Velikodvorskaya G., Borris R.. 1996; The multidomain xylanase A of the hyperthermophilic bacterium Thermotoga neapolitana is extremely thermoresistant. Appl Microbiol Biotechnol45:245–247[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-11-2947
Loading
/content/journal/micro/10.1099/00221287-146-11-2947
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error