The GenBank accession number for the sequence reported in this paper is AF200304.
The nucleotide sequence of the complete xynA gene, encoding a novel multidomain xylanase XynA of ‘Caldibacillus cellulovorans’, was determined by genomic-walking PCR. The putative XynA comprises an N-terminal domain (D1), recently identified as a xylan-binding domain (XBD), homologous to non-catalytic thermostabilizing domains from other xylanases. D1 is followed by a xylanase catalytic domain (D2) homologous to family 10 glycosyl hydrolases. Downstream of this domain two cellulose-binding domains (CBD), D3 and D4, were found linked via proline-threonine (PT)-rich peptides. Both CBDs showed sequence similarity to family IIIb CBDs. Upstream of xynA an incomplete open reading frame was identified, encoding a putative C-terminal CBD homologous to family IIIb CBDs. Two expression plasmids encoding the N-terminal XBD plus the catalytic domain (XynAd1/2) and the xylanase catalytic domain alone (XynAd2) were constructed and the biochemical properties of the recombinant enzymes compared. The absence of the XBD resulted in a decrease in thermostability of the catalytic domain from 70 °C (XynAd1/2) to 60 °C (XynAd2). Substrate-specificity experiments and analysis of the main products released from xylan hydrolysis indicate that both recombinant enzymes act as endo-1,4-β-xylanases, but differ in their ability to cleave small xylooligosaccharides.
BergquistP. L., GibbsM. D., MorrisD. D., Te’oV. S. J., SaulD. J., MorganH. W.1999; Molecular diversity of thermophilic cellulolytic and hemicellulolytic bacteria. FEMS Microbiol Ecol 28:99–110[CrossRef]
BlancoA., Dı́azP., ZuecoJ., ParascandolaP., PastorF. I. J.1999; A multidomain xylanase from a Bacillus sp. with a region homologous to thermostabilizing domains of thermophilic enzymes. Microbiology 145:2163–2170[CrossRef]
BlumD. L., KataevaI. A., LiX.-L., LjungdahlL. G.2000; Feruloyl esterase activity of the Clostridium thermocellum cellulosome can be attributed to previously unknown domains of XynY and XynZ. J Bacteriol 182:1346–1351[CrossRef]
ClarkeJ. H., DavidsonK., GilbertH. J., FontesC. M. G. A., HazlewoodG. P.1996; A modular xylanase from mesophilic Cellulomonas fimi contains the same cellulose-binding and thermostabilizing domains as xylanases from thermophilic bacteria. FEMS Microbiol Lett 139:27–35[CrossRef]
CroftJ. E., LoveD. R., BergquistP. L.1987; Expression of leucine genes from an extremely thermophilic bacterium in Escherichia coli. Mol Gen Genet 210:490–497[CrossRef]
DwivediP. P., GibbsM. D., SaulD. J., BergquistP. L.1996; Cloning, sequencing and overexpression in Escherichia coli of a xylanase gene, xynA from the thermophilic bacterium Caldicellulosiruptor Rt8B.4. Appl Environ Microbiol 45:86–93
FlintH. J., MartinJ., McPhersonC. A., DanielA. S., ZhangJ. X.1993; A bifunctional enzyme, with separate xylanase and β(1,3–1,4)-glucanase domains, encoded by the xynD gene of Ruminococcus flavefaciens. J Bacteriol 175:2943–2951
FontesC. M. G. A., HazlewoodG. P., MoragE., HallJ., HirstB. H., GilbertH. J.1995; Evidence for a general role for non-catalytic thermostabilizing domains in xylanases from thermophilic bacteria. Biochem J 307:151–158
GibbsM. D., ReevesR. A., SunnaA., BergquistP. L.1999; Sequencing and expression of a β-mannanase gene from the extreme thermophile Dictyoglomus thermophilum Rt46B.1, and characteristics of the recombinant enzyme. Curr Microbiol 39:351–357[CrossRef]
GilkesN. R., HenrissatB., KilburnD. G., MillerR. C. J., WarrenR. A. J.1991; Domains in microbial β-1,4-glycanases: sequence conservation, function, and enzyme families. Microbiol Rev 55:303–315
HayashiH., TakagiK. I., FukumuraM., KimuraT., KaritaS., SakkaK., OhmiyaK.1997; Sequence of xynC and properties of XynC, a major component of the Clostridium thermocellum cellulosome. J Bacteriol 179:4246–4253
LeeY.-E., LoweS. E., HenrissatB., ZeikusJ. G.1993; Characterization of the active site and thermostability regions of endoxylanase from Thermoanaerobacterium saccharolyticum B6A-RI. J Bacteriol 175:5890–5898
MacKayR. M., LoA., WillickG., ZukerM., BairdS., DoveM., MoranelliF., SeligyV.1986; Structure of a Bacillus subtilis endo-β-1,4-glucanase gene. Nucleic Acids Res 14:9159–9170[CrossRef]
MorrisD. D., ReevesR. A., GibbsM. D., SaulD. J., BergquistP. L.1995; Correction of the β-mannanase domain of the celC pseudogene from Caldicellulosiruptor saccharolyticus and activity of the gene product on kraft pulp. Appl Environ Microbiol 61:2262–2269
MorrisD. D., GibbsM. D., ChinC. W. J., KohM.-H., WongK. K. Y., AllisonR. W., NelsonP. J., BergquistP. L.1998; Cloning of the xynB gene from Dictyoglomus thermophilum strain Rt46B.1 and action of the gene product on kraft pulp. Appl Environ Microbiol 64:1759–1765
MorrisD. D., GibbsM. D., FordM., ThomasJ., BergquistP. L.1999; Family 10 and 11 xylanase genes from Caldicellulosiruptor sp. strain Rt69B.1. Extremophiles 3:103–111[CrossRef]
ReevesR. A., GibbsM. D., MorrisD. D., GriffithsK. R., SaulD. J., BergquistP. L.2000; Sequencing and expression of additional xylanase genes from the hyperthermophile Thermotogamaritima FjSS3B.1. Appl Environ Microbiol 66:1532–1537[CrossRef]
SaulD. J., WilliamsL. C., GraylingR. A., ChamleyL. W., LoveD. R., BergquistP. L.1990; celB, a gene coding for a bifunctional cellulase from the extreme thermophile ‘‘Caldocellum saccharolyticum’’. Appl Environ Microbiol 56:3117–3124
SunnaA., GibbsM. D., BergquistP. L.2000a; The thermostabilizing domain of Caldibacillus cellulovorans xylanase XynA is a xylan binding domain. Biochem J 346:583–586[CrossRef]
SunnaA., GibbsM. D., ChinC. W. J., NelsonP. J., BergquistP. L.2000b; A gene encoding for a novel multidomain β-1,4-mannanase from Caldibacillus cellulovorans and action of the recombinant enzyme on kraft pulp. Appl Environ Microbiol 66:664–670[CrossRef]
TeatherR. M., WoodP. J.1982; Use of Congo Red polysaccharide interaction in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol 43:777–780
TommeP., WarrenR. A. J., MillerR. C. J., KilburnD. G., GilkesN. R.1995; Cellulose-binding domains: classification and properties. In Enzymatic Degradation of Insoluble Carbohydrates pp. 142–163Edited bySaddlerJ. N., PennerM. H. Washington, DC: American Chemical Society;
TormoJ., LamedR., ChirinoA. J., MoragE., BayerE. A., ShohamY., SteitzT. A.1996; Crystal structure of a bacterial family-III cellulose-binding domain: a general mechanism for attachment to cellulose. EMBO J 15:5739–5751
WinterhalterC., LieblW.1995; Two extremely thermostable xylanases of the hyperthermophilic bacterium Thermotoga maritima MSB8. Appl Environ Microbiol 61:1810–1815
WinterhalterC., HeinrichP., CandussioA., WichG., LieblW.1995; Identification of a novel cellulose-binding domain within the multidomain 120 kDa xylanase XynA of the hyperthermophilic bacterium Thermotogamaritima. Mol Microbiol 15:431–444[CrossRef]
ZhangJ. X., MartinJ., FlintH. J.1994; Identification of non-catalytic conserved regions in xylanases encoded by the xynB and xynD genes of the cellulolytic rumen anaerobe Ruminococcus flavefaciens. Mol Gen Genet 245:260–264
ZverlovV., PiotukhK., DakhovaO., VelikodvorskayaG., BorrisR.1996; The multidomain xylanase A of the hyperthermophilic bacterium Thermotoga neapolitana is extremely thermoresistant. Appl Microbiol Biotechnol 45:245–247[CrossRef]