1887

Abstract

GcvA binds to three sites in the control region, from base −34 to −69 (site 1), from base −214 to −241 (site 2) and from base −242 to −271 (site 3). Previous results suggested that sites 3 and 2 are required for both GcvA-dependent activation and repression of a :: fusion. However, the results were less clear as to the role of site 1. To determine the role of site 1 in regulation, single and multiple base changes were made in site 1 and tested for their ability to alter GcvA-mediated activation and GcvA/GcvR-mediated repression. Several of the mutants were also tested for effects on GcvA binding to site 1 and the ability of GcvA to bend DNA at site 1. The results are consistent with site 1 playing primarily a role in negative regulation of the operon.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-11-2909
2000-11-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/11/1462909a.html?itemId=/content/journal/micro/10.1099/00221287-146-11-2909&mimeType=html&fmt=ahah

References

  1. Calvo, J. M. & Matthews, R. G. ( 1994; ). The leucine-responsive regulatory protein, a global regulator of metabolism in Escherichia coli. Microbiol Rev 58, 466-490.
    [Google Scholar]
  2. Casadaban, M. J., Chou, J. & Cohen, S. N. ( 1980; ). In vitro gene fusions that join an enzymatically active β-galactosidase segment to amino-terminal fragments of exogenous proteins: Escherichia coli plasmid vectors for the detection and cloning of translational initiation signals. J Bacteriol 143, 971-980.
    [Google Scholar]
  3. Estrem, S. T., Ross, W., Gaal, T., Chen, Z. W. S., Niu, W., Ebright, R. H. & Gourse, R. L. ( 1999; ). Bacterial promoter architecture: subsite structure of UP elements and interactions with the carboxy-terminal domain of the RNA polymerase α subunit. Genes Dev 13, 2134-2147.[CrossRef]
    [Google Scholar]
  4. Fried, M. & Crothers, D. M. ( 1981; ). Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res 9, 6505-6525.[CrossRef]
    [Google Scholar]
  5. Garner, M. M. & Revzin, A. ( 1981; ). A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: application to components of the Escherichia coli lactose operon regulatory system. Nucleic Acids Res 9, 3047-3060.[CrossRef]
    [Google Scholar]
  6. Ghrist, A. C. & Stauffer, G. V. ( 1995; ). Characterization of the Escherichia coli gcvR gene encoding a negative regulator of gcv expression. J Bacteriol 177, 4980-4984.
    [Google Scholar]
  7. Ghrist, A. C. & Stauffer, G. V. ( 1998; ). Promoter characterization and constitutive expression of the Escherichia coli gcvR gene. J Bacteriol 180, 1803-1807.
    [Google Scholar]
  8. Jourdan, A. D. & Stauffer, G. V. ( 1998; ). Mutational analysis of the transcriptional regulator GcvA: amino acids important for activation, repression, and DNA binding. J Bacteriol 180, 4865-4871.
    [Google Scholar]
  9. Kikuchi, G. ( 1973; ). The glycine cleavage system: composition, reaction mechanism, and physiological significance. Mol Cell Biochem 1, 169-187.[CrossRef]
    [Google Scholar]
  10. Kilstrup, M., Meng, L. M., Neuhard, J. & Nygaard, P. ( 1989; ). Genetic evidence for a repressor of synthesis of cytosine deaminase and purine biosynthesis enzymes in Escherichia coli. J Bacteriol 171, 2124-2127.
    [Google Scholar]
  11. Kim, J., Zwieb, C., Wu, C. & Adhya, S. ( 1989; ). Bending of DNA by gene-regulatory proteins: construction and use of a DNA bending vector. Gene 85, 15-23.[CrossRef]
    [Google Scholar]
  12. Lin, R., D’Ari, R. & Newman, E. B. ( 1992; ). placMu insertions in genes of the leucine regulon: extension of the regulon to genes not regulated by leucine. J Bacteriol 174, 1948-1955.
    [Google Scholar]
  13. Marinus, M. G. (1996). Methylation of DNA. In Escherichia coli and Salmonella: Cellular and Molecular Biology, pp. 782–791. Edited by F. C. Neidhardt & others. Washington, DC: American Society for Microbiology.
  14. Meng, L. M. & Nygaard, P. ( 1990; ). Identification of hypoxanthine and guanine as the co-repressors for the purine regulon genes of Escherichia coli. Mol Microbiol 4, 2187-2192.[CrossRef]
    [Google Scholar]
  15. Miller, J. H. (1992). A Short Course in Bacterial Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  16. Mudd, S. H. & Cantoni, G. L. ( 1964; ). Biological transmethylation, methyl-group neogenesis and other ‘one-carbon’ metabolic reactions dependent upon tetrahydrofolic acid. In Comprehensive Biochemistry, pp. 1-47. Edited by M. Florkin & E. H. Stotz. Amsterdam: Elsevier.
  17. Panasenko, S. M., Cameron, J. R., Davis, R. W. & Lehman, I. R. ( 1977; ). Five-hundredfold overproduction of DNA ligase after induction of a hybrid lambda lysogen constructed in vitro. Science 196, 188-189.[CrossRef]
    [Google Scholar]
  18. Plamann, M. D., Rapp, W. D. & Stauffer, G. V. ( 1983; ). Escherichia coli K12 mutants defective in the glycine cleavage enzyme system. Mol Gen Genet 192, 15-20.[CrossRef]
    [Google Scholar]
  19. Rojo, R. & Salas, M. ( 1991; ). A DNA curvature can substitute phage ϕ29 regulatory protein p4 when acting as a transcriptional repressor. EMBO J 10, 3429-3438.
    [Google Scholar]
  20. Rolfes, R. J. & Zalkin, H. ( 1988; ). Escherichia coli gene purR encoding a repressor protein for purine nucleotide synthesis. J Biol Chem 263, 19653-19661.
    [Google Scholar]
  21. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  22. Sarkar, G. & Sommer, S. S. ( 1990; ). The ‘megaprimer’ method of site-directed mutagenesis. BioTechniques 8, 404-407.
    [Google Scholar]
  23. Schell, M. A. ( 1993; ). Molecular biology of the LysR family of transcriptional regulators. Annu Rev Microbiol 47, 597-626.[CrossRef]
    [Google Scholar]
  24. Shimada, K., Weisberg, R. A. & Gottesman, M. E. ( 1972; ). Prophage lambda at unusual chromosomal locations. I. Location of the secondary attachment sites and the properties of the lysogens. J Mol Biol 63, 483-503.[CrossRef]
    [Google Scholar]
  25. Stauffer, L. T. & Stauffer, G. V. ( 1994; ). Characterization of the gcv control region from Escherichia coli. J Bacteriol 176, 6159-6164.
    [Google Scholar]
  26. Stauffer, L. T. & Stauffer, G. V. ( 1998a; ). Roles for GcvA-binding sites 3 and 2 and the Lrp-binding region in gcvT::lacZ expression in Escherichia coli. Microbiology 144, 2865-2872.[CrossRef]
    [Google Scholar]
  27. Stauffer, L. T. & Stauffer, G. V. ( 1998b; ). Spacing and orientation requirements of GcvA-binding sites 3 and 2 and the Lrp-binding region for gcvT::lacZ expression in Escherichia coli. Microbiology 144, 1417-1422.[CrossRef]
    [Google Scholar]
  28. Stauffer, L. T. & Stauffer, G. V. ( 1999; ). Role for the leucine-responsive regulatory protein (Lrp) as a structural protein in regulating the Escherichia coli gcvTHP operon. Microbiology 145, 569-576.[CrossRef]
    [Google Scholar]
  29. Stauffer, L. T., Ghrist, A. & Stauffer, G. V. ( 1993; ). The Escherichia coli gcvT gene encoding the T-protein of the glycine cleavage enzyme system. DNA Seq–J DNA Seq Mapping 3, 339-346.
    [Google Scholar]
  30. Stauffer, L. T., Fogarty, S. J. & Stauffer, G. V. ( 1994; ). Characterization of the Escherichia coli gcv operon. Gene 142, 17-22.[CrossRef]
    [Google Scholar]
  31. Steiert, P. S., Stauffer, L. T. & Stauffer, G. V. ( 1990; ). The lpd gene product functions as the L protein in the Escherichia coli glycine cleavage enzyme system. J Bacteriol 172, 6142-6144.
    [Google Scholar]
  32. Vogel, H. J. & Bonner, D. M. ( 1956; ). Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem 218, 97-106.
    [Google Scholar]
  33. Wilson, R. L., Stauffer, L. T. & Stauffer, G. V. ( 1993a; ). Roles of the GcvA and PurR proteins in negative regulation of the Escherichia coli glycine cleavage enzyme system. J Bacteriol 175, 5129-5134.
    [Google Scholar]
  34. Wilson, R. L., Steiert, P. S. & Stauffer, G. V. ( 1993b; ). Positive regulation of the Escherichia coli glycine cleavage enzyme system. J Bacteriol 175, 902-904.
    [Google Scholar]
  35. Wilson, R. L., Urbanowski, M. L. & Stauffer, G. V. ( 1995; ). DNA binding sites of the LysR-type regulator GcvA in the gcv and gcvA control regions of Escherichia coli. J Bacteriol 177, 4940-4946.
    [Google Scholar]
  36. Wonderling, L. D. & Stauffer, G. V. ( 1999; ). The cyclic AMP receptor protein is dependent on GcvA for regulation of the gcv operon. J Bacteriol 181, 1912-1919.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-11-2909
Loading
/content/journal/micro/10.1099/00221287-146-11-2909
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error