1887

Abstract

grown for 16 h in the presence of [C]spermine formed a high intracellular pool of [C]spermidine and a small but detectable pool of [C]putrescine. When [H]putrescine was added to the growth medium, a large intracellular pool of [H]putrescine was found, but it was not further metabolized, confirming previous studies suggesting the absence of a forward-directed polyamine synthetic pathway in . Spermidine:spermine -acetyltransferase (SSAT) and polyamine oxidase enzyme activities were detected which collectively converted spermine to spermidine. Polyamine oxidase was localized in the hydrogenosome-enriched fraction, whereas SSAT was found predominantly in the cytosolic fraction. In the presence of saturating substrate, the trichomonad SSAT had an activity of 039±009 nmol min (mg protein) (the mean of five analyses) and an apparent for spermine of 17 μM. The enzyme was competitively inhibited by di(ethyl)spermine with a of 28 μM. Growth studies indicated that 50 μM di(ethyl)spermine caused a 68% and 84% reduction in the intracellular concentrations of spermidine and spermine, respectively. The trichomonad polyamine oxidase required FAD as a cofactor and had an apparent of 60 μM for -acetylspermine. The potential of bis(alkyl) polyamine analogues as antitrichomonad agents is discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-10-2715
2000-10-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/10/1462715a.html?itemId=/content/journal/micro/10.1099/00221287-146-10-2715&mimeType=html&fmt=ahah

References

  1. Ariyanayagan, M. R. & Fairlamb, A. H. ( 1997; ). Diamine auxotrophy may be a universal feature of Trypanosoma cruzi epimastigotes. Mol Biochem Parasitol 84, 111-121.[CrossRef]
    [Google Scholar]
  2. Bergeron, R. J., Hawthorne, T. R., Vinson, J. R. T., Beck, D. E.Jr & Ingeno, M. J. ( 1989; ). Role of the methylene backbone in the antiproliferative activity of polyamine analogues on L1210 cells. Cancer Res 49, 2959-2964.
    [Google Scholar]
  3. Casero, R. A.Jr & Pegg, A. E. ( 1993; ). Spermidine/spermine N 1-acetyltransferase - the turning point in polyamine metabolism. FASEB J 7, 653-661.
    [Google Scholar]
  4. Casero, R. A.Jr, Celano, P., Ervin, S. J., Porter, C. W., Bergeron, R. J. & Libby, P. R. ( 1989; ). Differential induction of spermidine/spermine N 1-acetyltransferase in human lung cancer cells by the bis(ethyl) polyamine analogues. Cancer Res 49, 3829-3833.
    [Google Scholar]
  5. Chapman, A., Linstead, D. J., Lloyd, D. & Williams, J. ( 1985; ). 13C-NMR reveals glycerol as an unexpected major metabolite of the protozoan parasite Trichomonas vaginalis. FEBS Lett 191, 287-292.[CrossRef]
    [Google Scholar]
  6. Cohen, S. (1998). Polyamine oxidases and dehydrogenases: In A Guide to the Polyamines, pp. 69–93. New York: Oxford University Press.
  7. Diamond, L. ( 1957; ). The establishment of various trichomonads of animals and man in axenic cultures. J Parasitol 43, 488-490.
    [Google Scholar]
  8. Erwin, B. G. & Pegg, A. E. ( 1986; ). Regulation of spermidine/spermine N 1-acetyltransferase in L6 cells by polyamines and related compounds. Biochem J 238, 581-587.
    [Google Scholar]
  9. Federico, R., Ercolini, L., Laurenzi, M. & Angelini, R. ( 1996; ). Oxidation of acetylpolyamines by maize polyamine oxidase. Phytochemistry 43, 339-341.[CrossRef]
    [Google Scholar]
  10. Feurstein, B. G., Pattabiraman, N. & Marton, L. J. ( 1990; ). Molecular mechanisms of the interactions of spermine with DNA:DNA bending as a result of ligand binding. Nucleic Acids Res 18, 1271-1277.[CrossRef]
    [Google Scholar]
  11. Ha, H. C., Woster, P. M., Yager, J. D. & Casero, R. A.Jr ( 1997; ). The role of polyamine catabolism in polyamine analogue-induced programmed cell death. Proc Natl Acad Sci U S A 94, 11557-11562.[CrossRef]
    [Google Scholar]
  12. Holta, E. ( 1977; ). Oxidation of spermidine and spermine in rat liver: purification and properties of polyamine oxidase. Biochemistry 16, 91-100.[CrossRef]
    [Google Scholar]
  13. Kim, B. G., Sobota, A., Bitonti, A. J., McCann, P. P. & Byers, T. J. ( 1987; ). Polyamine metabolism in Acanthamoeba: polyamine content and synthesis of ornithine, putrescine, and diaminopropane. J Protozool 34, 278-284.[CrossRef]
    [Google Scholar]
  14. Knodler, L. A., Edwards, M. R. & Schofield, P. J. ( 1994; ). The intracellular amino acid pools of Giardia intestinalis, Trichomonas vaginalis, and Crithidia luciliae. Exp Parasitol 79, 117-125.[CrossRef]
    [Google Scholar]
  15. Libby, P. R., Henderson, M., Bergeron, R. J. & Porter, C. W. ( 1989; ). Major increases in spermidine/spermine N 1-acetyltransferase activity by spermine analogues and their relationship to polyamine depletion and growth inhibition in L1210 cells. Cancer Res 49, 6226-6231.
    [Google Scholar]
  16. Lindmark, D. G. & Müller, M. ( 1974; ). Biochemical cytology of trichomonad flagellates. II. Subcellular distributions of oxidoreductases and hydrolases in Monocercomonas sp. J Protozool 21, 374-378.[CrossRef]
    [Google Scholar]
  17. Linstead, D. & Cranshaw, M. A. ( 1983; ). The pathway of arginine catabolism in the parasitic flagellate Trichomonas vaginalis. Mol Biochem Parasitol 8, 241-252.[CrossRef]
    [Google Scholar]
  18. Marton, L. J. & Pegg, A. E. ( 1995; ). Polyamines as targets for therapeutic intervention. Annu Rev Pharmacol Toxicol 35, 55-91.[CrossRef]
    [Google Scholar]
  19. Mondovi, B., Avigliano, L. & Morpurgo, L. ( 1988; ). In vitro specificity of Cu-amine oxidase inhibitors. Pharmacol Res Commun 20, 39-43.
    [Google Scholar]
  20. Müller, M. ( 1989; ). Biochemistry of Trichomonas vaginalis. In Trichomonads Parasitic in Humans , pp. 53-83. Edited by B. M. Honigberg. New York:Springer.
  21. Pavlov, V., Nikolov, I., Damjanov, D. & Dimitrov, O. ( 1991; ). Distribution of polyamine oxidase activity in rat tissues and subcellular fractions. Experientia 47, 1209-1211.[CrossRef]
    [Google Scholar]
  22. Pegg, A. E., Wechter, R., Pakala, R. & Bergeron, R. J. ( 1989; ). Effect of N 1, N 2- bis(ethyl)spermine and related compounds on growth and polyamine acetylation, content, and excretion in human colon tumour cells. J Biol Chem 264, 11744-11749.
    [Google Scholar]
  23. Porter, C. W., Ganis, B., Libby, P. R. & Bergeron, R. J. ( 1991; ). Correlations between polyamine analog-induced increases in spermidine/spermine N 1-acetyltransferase activity, polyamine pool depletion, and growth inhibition in human melanoma cells lines. Cancer Res 51, 3715-3720.
    [Google Scholar]
  24. Reis, I. A., Martinez, M. P., Yarlett, N., Johnson, P. J., Silva-Filho, F. C. & Vannier-Santos, M. A. ( 1999; ). Inhibition of polyamine synthesis arrests trichomonad growth and induces destruction of hydrogenosomes. Antimicrob Agents Chemother 43, 1919-1923.
    [Google Scholar]
  25. Santoro, G. F., Yarlett, N. & Vannier-Santos, M. A. ( 1999; ). Effects of polyamine analogues on Trichomonas vaginalis. Acta Microscop 8, 645.
    [Google Scholar]
  26. Segal, I. H. (1976). Biochemical Calculations.New York: Wiley.
  27. Seiler, N. ( 1987; ). Function of polyamine acetylation. Can J Physiol Pharmacol 65, 2024-2035.[CrossRef]
    [Google Scholar]
  28. Tabor, C. W. & Tabor, H. ( 1984; ). Polyamines. Annu Rev Biochem 53, 749-790.[CrossRef]
    [Google Scholar]
  29. Wallace, H. M. ( 1987; ). Polyamine catabolism in mammalian cells: excretion and acetylation. Med Sci Res 15, 1437-1440.
    [Google Scholar]
  30. Woster, P. M. ( 1993; ). Spermidine/spermine N 1-acetyltransferase (SSAT) – an emerging target for the design of anti-tumour agents. Curr Opin Invest Drugs 2, 1291-1299.
    [Google Scholar]
  31. Yarlett, N. ( 1988; ). Polyamine biosynthesis and inhibition in Trichomonas vaginalis. Parasitol Today 4, 357-360.[CrossRef]
    [Google Scholar]
  32. Yarlett, N. & Bacchi, C. J. ( 1988; ). Effect of dl-α-difluoromethylornithine on polyamine synthesis and interconversion in Trichomonas vaginalis grown in a semi-defined medium. Mol Biochem Parasitol 31, 1-10.[CrossRef]
    [Google Scholar]
  33. Yarlett, N. & Bacchi, C. J. ( 1994; ). Parasite polyamine metabolism: targets for chemotherapy. Biochem Soc Trans 22, 875-880.
    [Google Scholar]
  34. Yarlett, N., Goldberg, B., Moharrami, M. A. & Bacchi, C. J. ( 1993; ). Trichomonas vaginalis: characterization of ornithine decarboxylase. Biochem J 293, 487-493.
    [Google Scholar]
  35. Yarlett, N., Lindmark, D. G., Goldberg, B., Moharrami, M. A. & Bacchi, C. J. ( 1994; ). Subcellular localization of the enzymes of the arginine dihydrolase pathway in Trichomonas vaginalis and Tritrichomonas foetus. J Euk Microbiol 41, 554-559.[CrossRef]
    [Google Scholar]
  36. Yarlett, N., Martinez, M. P., Moharrami, M. A. & Tachezy, J. ( 1996; ). The contribution of arginine dihydrolase pathway to energy metabolism by Trichomonas vaginalis. Mol Biochem Parasitol 78, 117-125.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-10-2715
Loading
/content/journal/micro/10.1099/00221287-146-10-2715
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error