1887

Abstract

Intracellular pH (pH) is an essential parameter in the regulation of intracellular processes. Thus, its measurement might provide clues regarding the physiological state of cells cultivated . pH of the filamentous, pristinamycin-producing was determined by epifluorescence microscopy and image analysis using the pH-sensitive fluorescent probe BCECF-AM [2’,7’-bis(2-carboxyethyl)-5(6)-carboxyfluorescein, acetoxymethyl ester]. Staining cell culture samples (OD=1) of with 20 μM BCECF at 28 °C for 30 min yielded a green/red fluorescence ratio ( ) that correlated with the pH of the cells for values ranging from 65 to 85. When was cultivated in pristinamycin-producing conditions (in batch mode, with a constant external pH of 68), the measured pH varied between 63 and 87. In fact, pH correlated with the excretion of pristinamycins and glucose consumption during the production process.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-10-2671
2000-10-01
2020-01-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/10/1462671a.html?itemId=/content/journal/micro/10.1099/00221287-146-10-2671&mimeType=html&fmt=ahah

References

  1. Baltz R. H.. 1998; Genetic manipulation of antibiotic-producing Streptomyces. Trends Microbiol6:76–83[CrossRef]
    [Google Scholar]
  2. Boyarsky G., Hanssen C., Clyne L. A.. 1996a; Inadequacy of high K+/nigericin for calibrating BCECF II. Intracellular pH dependence of the correction. Am J Physiol271:1146–1156
    [Google Scholar]
  3. Boyarsky G., Hanssen C., Clyne L. A.. 1996b; Superiority of in vitro over in vivo calibrations of BCECF in vascular smooth muscle cells. FASEB J10:1205–1212
    [Google Scholar]
  4. Breeuwer P., Drocourt J. L., Rombouts F. M., Abee T.. 1996; A novel method for continuous determination of the intracellular pH in bacteria with the internally conjugated fluorescent probe 5 (and 6-)-carboxyfluorescein succinimidyl ester. Appl Environ Microbiol62:178–183
    [Google Scholar]
  5. Cherlet M., Franck P., Nabet P., Marc A.. 1999; Development and validation of a methodology for intracellular pH measurements of hybridoma cells under bioreactor culture conditions. Biotechnol Prog15:630–639[CrossRef]
    [Google Scholar]
  6. Coster M., Chermant J. P.. 1989; Traitement des images en niveau de gris. In Précis d’Analyse d’Images pp.387–395 Paris: Presse du CNRS;
    [Google Scholar]
  7. Cox P. W., Thomas C. R.. 1992; Classification and measurement of fungal pellets by automated image analysis. . Biotechnol Bioeng39:945–952[CrossRef]
    [Google Scholar]
  8. Cox P. W., Paul G. C., Thomas C. R.. 1998; Image analysis of the morphology of filamentous micro-organisms. Microbiology144:817–827[CrossRef]
    [Google Scholar]
  9. Craig W. A.. 1996; Antimicrobial resistance issues of the future. Diagn Microbiol Infect Dis25:213–217[CrossRef]
    [Google Scholar]
  10. Demain A. L.. 1972; Cellular and environmental factors affecting the synthesis and excretion of metabolites. J Appl Chem Biotechnol22:345–362[CrossRef]
    [Google Scholar]
  11. Demain A. L.. 1999; Pharmaceutically active secondary metabolites of micro-organisms. Appl Microbiol Biotechnol52:455–463[CrossRef]
    [Google Scholar]
  12. Dix A., Verkman A. S.. 1990; Mapping of fluorescence anisotropy in living cells by ratio imaging. Application to cytoplasmic viscosity. Biophys J57:231–240[CrossRef]
    [Google Scholar]
  13. Drouin J. F., Louvel L., Vanhoutte B., Vivier H., Pons M. N., Germain P.. 1997; Quantitative characterization of cellular differentiation of Streptomyces ambofaciens in submerged culture by image analysis. Biotechnol Tech11:819–824[CrossRef]
    [Google Scholar]
  14. Durant G., Cox P. W., Formisyn P., Thomas C. R.. 1994a; Improved image analysis algorithm for the characterization of mycelial aggregates after staining. Biotechnol Tech8:759–764[CrossRef]
    [Google Scholar]
  15. Durant G., Crawley G., Formisyn P.. 1994b; A simple staining procedure for the characterization of basidiomycetes pellets by image analysis. Biotechnol Tech11:395–400
    [Google Scholar]
  16. Franck P., Petitpain N., Cherlet M., Dardenne M., Maachi F., Schutz B., Poisson L., Nabet P.. 1996; Measurement of intracellular pH in cultured cells by flow cytometry with BCECF-AM. . J Biotechnol46:187–195[CrossRef]
    [Google Scholar]
  17. Futsaether C. M., Kjeldstad B., Johnson A.. 1993; Measurement of the intracellular pH of Propionibacterium acnes: comparison between the fluorescent probe BCECF and 31P-NMR spectroscopy. . Can J Microbiol39:180–186[CrossRef]
    [Google Scholar]
  18. Guillouet S.. 1996; Etude cinétique et physiologique de Corynebacterium glutamicum sous stress osmotique PhD thesis INPL-Nancy; France:
    [Google Scholar]
  19. Heiple J. M., Taylor D. L.. 1980; Intracellular pH in single motile cells. J Cell Biol86:885–890[CrossRef]
    [Google Scholar]
  20. Imai T., Ohno T.. 1995; Measurement of yeast intracellular pH by image processing and the change it undergoes during growth phase. J Biotechnol38:165–172[CrossRef]
    [Google Scholar]
  21. Leyval D., Debay F., Engasser J. M., Goergen J. L.. 1997; Flow cytometry for the intracellular pH measurement of glutamate producing Corynebacterium glutamicum. J Microbiol Methods29:121–127[CrossRef]
    [Google Scholar]
  22. Lubbe C., Demain A. L., Bergman K.. 1985; Use of controlled-release polymer to feed ammonium to Streptomyces clavuligerus cephalosporin fermentations in shake flasks. Appl Microbiol Biotechnol22:424–427
    [Google Scholar]
  23. Mauss P., Drouin J. F., Pons M. N., Vivier H., Germain P., Louvel L., Vanhoutte B.. 1997; Location of respiration activity in filamentous bacteria by image analysis. Biotechnol Tech11:813–817[CrossRef]
    [Google Scholar]
  24. Musgrove E., Rugg C., Hedley D.. 1986; Flow cytometry measurement of cytoplasmic pH: a critical evaluation of available fluorochromes. Cytometry7:347–355[CrossRef]
    [Google Scholar]
  25. Nielsen J., Johansen C. L., Jacobsen M., Krabben P., Villadsen J.. 1995; Pellet formation and fragmentation in submerged cultures of Penicillium chrysogenum and its relation to penicillin production. Biotechnol Prog11:93–98[CrossRef]
    [Google Scholar]
  26. Paquet V.. 1990; Mise en evidence de facteurs d’induction de la production de pristinamycines chez Streptomyces pristinaespiralis PhD thesis INSA; Toulouse, France:
    [Google Scholar]
  27. Paradiso A. M., Tsien R. Y., Machen T. E.. 1987; Digital image processing of intracellular pH in gastric oxyntic and chief cells. . Nature325:447–450[CrossRef]
    [Google Scholar]
  28. Paul G. C., Thomas C. R.. 1998; Characterization of mycelial morphology using image analysis. Adv Biochem Eng Biotechnol60:1–59
    [Google Scholar]
  29. Pons M. N., Vivier H. L.. 1999; Biomass quantification by image analysis. Adv Biochem Eng Biotechnol66:135–183
    [Google Scholar]
  30. Pons M. N., Drouin J. F., Louvel L., Vanhoutte B., Vivier H., Germain P.. 1998; Physiological investigations by image analysis. J Biotechnol65:3–14[CrossRef]
    [Google Scholar]
  31. Pressman B. C.. 1976; Biological applications of ionophores. Annu Rev Biochem45:501–530[CrossRef]
    [Google Scholar]
  32. Preud’homme J., Tarridec P., Belloc A.. 1968; Pristinamycine: isolement, caractérisation et identification des constituants. Bull Soc Chim Fr2:585–591
    [Google Scholar]
  33. Rhõne-Poulenc. 1961; Procédé de préparation d’un antibiotique par une nouvelle souche de StreptomycesFrench Patent no. 1-301-857
    [Google Scholar]
  34. Rondags E., Halliday E., Marc I.. 1998; Diacetyl production mechanism by a strain of Lactococcus lactis spp lactis bv. diacetylactis. Study of α-acetolactic acid extracellular accumulation under anaerobiosis. Appl Biochem Biotechnol69:113–125[CrossRef]
    [Google Scholar]
  35. Siegumfeldt H., Rechinger K. B., Jakobsen M.. 1999; Use of fluorescence ratio imaging for intracellular pH determination of individual bacteria cells in mixed cultures. Microbiology145:1703–1709[CrossRef]
    [Google Scholar]
  36. Sieracki M. E., Reichenbach S. E., Webb K. L.. 1989; Evaluation of automated threshold selection methods for accurately sizing microscopic fluorescent cells by image analysis. Appl Environ Microbiol55:2762–2772
    [Google Scholar]
  37. Slavik J.. 1983; Intracellular pH topography: determination by a fluorescent probe. FEBS Lett156:227–230[CrossRef]
    [Google Scholar]
  38. Slavik J.. 1997; Application of fluorescent probes in cellular biology. Measurement of intracellular pH. J Lumin72:575–577
    [Google Scholar]
  39. Thibaut D., Ratet N., Bisch D., Faucher D., Debussche L., Blanche F.. 1995; Purification of the two-enzyme system catalysing the oxidation of the d-proline residue of pristinamycin IIB during the last step of pristinamycin IIA biosynthesis. J Bacteriol177:5199–5205
    [Google Scholar]
  40. Thomas C. R.. 1992; Image analysis: putting filamentous micro-organisms in the picture. Trends Biotechnol10:343–348[CrossRef]
    [Google Scholar]
  41. Videau D.. 1982; Etude de l’activité bactéricide de la pristinamycine. Pathol Biol30:529–534
    [Google Scholar]
  42. Whitaker A.. 1991; Actinomycetes in submerged culture. Appl Biochem Biotechnol32:23–35
    [Google Scholar]
  43. Yang K. Y., Morikawa M., Shimizu H., Shioya S., Suga K. I., Nihira T., Yamada Y.. 1996; Image analysis of mycelial morphology in virginiamycin production by batch culture of Streptomyces virginiae. J Ferment Bioeng81:7–12[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-10-2671
Loading
/content/journal/micro/10.1099/00221287-146-10-2671
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error