1887

Abstract

Intracellular pH (pH) is an essential parameter in the regulation of intracellular processes. Thus, its measurement might provide clues regarding the physiological state of cells cultivated . pH of the filamentous, pristinamycin-producing was determined by epifluorescence microscopy and image analysis using the pH-sensitive fluorescent probe BCECF-AM [2’,7’-bis(2-carboxyethyl)-5(6)-carboxyfluorescein, acetoxymethyl ester]. Staining cell culture samples (OD=1) of with 20 μM BCECF at 28 °C for 30 min yielded a green/red fluorescence ratio ( ) that correlated with the pH of the cells for values ranging from 65 to 85. When was cultivated in pristinamycin-producing conditions (in batch mode, with a constant external pH of 68), the measured pH varied between 63 and 87. In fact, pH correlated with the excretion of pristinamycins and glucose consumption during the production process.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-10-2671
2000-10-01
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/10/1462671a.html?itemId=/content/journal/micro/10.1099/00221287-146-10-2671&mimeType=html&fmt=ahah

References

  1. Baltz R. H. 1998; Genetic manipulation of antibiotic-producing Streptomyces. Trends Microbiol 6:76–83 [CrossRef]
    [Google Scholar]
  2. Boyarsky G., Hanssen C., Clyne L. A. 1996a; Inadequacy of high K+/nigericin for calibrating BCECF II. Intracellular pH dependence of the correction. Am J Physiol 271:1146–1156
    [Google Scholar]
  3. Boyarsky G., Hanssen C., Clyne L. A. 1996b; Superiority of in vitro over in vivo calibrations of BCECF in vascular smooth muscle cells. FASEB J 10:1205–1212
    [Google Scholar]
  4. Breeuwer P., Drocourt J. L., Rombouts F. M., Abee T. 1996; A novel method for continuous determination of the intracellular pH in bacteria with the internally conjugated fluorescent probe 5 (and 6-)-carboxyfluorescein succinimidyl ester. Appl Environ Microbiol 62:178–183
    [Google Scholar]
  5. Cherlet M., Franck P., Nabet P., Marc A. 1999; Development and validation of a methodology for intracellular pH measurements of hybridoma cells under bioreactor culture conditions. Biotechnol Prog 15:630–639 [CrossRef]
    [Google Scholar]
  6. Coster M., Chermant J. P. 1989; Traitement des images en niveau de gris. In Précis d’Analyse d’Images pp. 387–395 Paris: Presse du CNRS;
    [Google Scholar]
  7. Cox P. W., Thomas C. R. 1992; Classification and measurement of fungal pellets by automated image analysis. . Biotechnol Bioeng 39:945–952 [CrossRef]
    [Google Scholar]
  8. Cox P. W., Paul G. C., Thomas C. R. 1998; Image analysis of the morphology of filamentous micro-organisms. Microbiology 144:817–827 [CrossRef]
    [Google Scholar]
  9. Craig W. A. 1996; Antimicrobial resistance issues of the future. Diagn Microbiol Infect Dis 25:213–217 [CrossRef]
    [Google Scholar]
  10. Demain A. L. 1972; Cellular and environmental factors affecting the synthesis and excretion of metabolites. J Appl Chem Biotechnol 22:345–362 [CrossRef]
    [Google Scholar]
  11. Demain A. L. 1999; Pharmaceutically active secondary metabolites of micro-organisms. Appl Microbiol Biotechnol 52:455–463 [CrossRef]
    [Google Scholar]
  12. Dix A., Verkman A. S. 1990; Mapping of fluorescence anisotropy in living cells by ratio imaging. Application to cytoplasmic viscosity. Biophys J 57:231–240 [CrossRef]
    [Google Scholar]
  13. Drouin J. F., Louvel L., Vanhoutte B., Vivier H., Pons M. N., Germain P. 1997; Quantitative characterization of cellular differentiation of Streptomyces ambofaciens in submerged culture by image analysis. Biotechnol Tech 11:819–824 [CrossRef]
    [Google Scholar]
  14. Durant G., Cox P. W., Formisyn P., Thomas C. R. 1994a; Improved image analysis algorithm for the characterization of mycelial aggregates after staining. Biotechnol Tech 8:759–764 [CrossRef]
    [Google Scholar]
  15. Durant G., Crawley G., Formisyn P. 1994b; A simple staining procedure for the characterization of basidiomycetes pellets by image analysis. Biotechnol Tech 11:395–400
    [Google Scholar]
  16. Franck P., Petitpain N., Cherlet M., Dardenne M., Maachi F., Schutz B., Poisson L., Nabet P. 1996; Measurement of intracellular pH in cultured cells by flow cytometry with BCECF-AM. . J Biotechnol 46:187–195 [CrossRef]
    [Google Scholar]
  17. Futsaether C. M., Kjeldstad B., Johnson A. 1993; Measurement of the intracellular pH of Propionibacterium acnes: comparison between the fluorescent probe BCECF and 31P-NMR spectroscopy. . Can J Microbiol 39:180–186 [CrossRef]
    [Google Scholar]
  18. Guillouet S. 1996 Etude cinétique et physiologique de Corynebacterium glutamicum sous stress osmotique PhD thesis INPL-Nancy; France:
    [Google Scholar]
  19. Heiple J. M., Taylor D. L. 1980; Intracellular pH in single motile cells. J Cell Biol 86:885–890 [CrossRef]
    [Google Scholar]
  20. Imai T., Ohno T. 1995; Measurement of yeast intracellular pH by image processing and the change it undergoes during growth phase. J Biotechnol 38:165–172 [CrossRef]
    [Google Scholar]
  21. Leyval D., Debay F., Engasser J. M., Goergen J. L. 1997; Flow cytometry for the intracellular pH measurement of glutamate producing Corynebacterium glutamicum. J Microbiol Methods 29:121–127 [CrossRef]
    [Google Scholar]
  22. Lubbe C., Demain A. L., Bergman K. 1985; Use of controlled-release polymer to feed ammonium to Streptomyces clavuligerus cephalosporin fermentations in shake flasks. Appl Microbiol Biotechnol 22:424–427
    [Google Scholar]
  23. Mauss P., Drouin J. F., Pons M. N., Vivier H., Germain P., Louvel L., Vanhoutte B. 1997; Location of respiration activity in filamentous bacteria by image analysis. Biotechnol Tech 11:813–817 [CrossRef]
    [Google Scholar]
  24. Musgrove E., Rugg C., Hedley D. 1986; Flow cytometry measurement of cytoplasmic pH: a critical evaluation of available fluorochromes. Cytometry 7:347–355 [CrossRef]
    [Google Scholar]
  25. Nielsen J., Johansen C. L., Jacobsen M., Krabben P., Villadsen J. 1995; Pellet formation and fragmentation in submerged cultures of Penicillium chrysogenum and its relation to penicillin production. Biotechnol Prog 11:93–98 [CrossRef]
    [Google Scholar]
  26. Paquet V. 1990 Mise en evidence de facteurs d’induction de la production de pristinamycines chez Streptomyces pristinaespiralis PhD thesis INSA; Toulouse, France:
    [Google Scholar]
  27. Paradiso A. M., Tsien R. Y., Machen T. E. 1987; Digital image processing of intracellular pH in gastric oxyntic and chief cells. . Nature 325:447–450 [CrossRef]
    [Google Scholar]
  28. Paul G. C., Thomas C. R. 1998; Characterization of mycelial morphology using image analysis. Adv Biochem Eng Biotechnol 60:1–59
    [Google Scholar]
  29. Pons M. N., Vivier H. L. 1999; Biomass quantification by image analysis. Adv Biochem Eng Biotechnol 66:135–183
    [Google Scholar]
  30. Pons M. N., Drouin J. F., Louvel L., Vanhoutte B., Vivier H., Germain P. 1998; Physiological investigations by image analysis. J Biotechnol 65:3–14 [CrossRef]
    [Google Scholar]
  31. Pressman B. C. 1976; Biological applications of ionophores. Annu Rev Biochem 45:501–530 [CrossRef]
    [Google Scholar]
  32. Preud’homme J., Tarridec P., Belloc A. 1968; Pristinamycine: isolement, caractérisation et identification des constituants. Bull Soc Chim Fr 2:585–591
    [Google Scholar]
  33. Rhõne-Poulenc. 1961 Procédé de préparation d’un antibiotique par une nouvelle souche de StreptomycesFrench Patent no. 1-301-857
    [Google Scholar]
  34. Rondags E., Halliday E., Marc I. 1998; Diacetyl production mechanism by a strain of Lactococcus lactis spp lactis bv. diacetylactis. Study of α-acetolactic acid extracellular accumulation under anaerobiosis. Appl Biochem Biotechnol 69:113–125 [CrossRef]
    [Google Scholar]
  35. Siegumfeldt H., Rechinger K. B., Jakobsen M. 1999; Use of fluorescence ratio imaging for intracellular pH determination of individual bacteria cells in mixed cultures. Microbiology 145:1703–1709 [CrossRef]
    [Google Scholar]
  36. Sieracki M. E., Reichenbach S. E., Webb K. L. 1989; Evaluation of automated threshold selection methods for accurately sizing microscopic fluorescent cells by image analysis. Appl Environ Microbiol 55:2762–2772
    [Google Scholar]
  37. Slavik J. 1983; Intracellular pH topography: determination by a fluorescent probe. FEBS Lett 156:227–230 [CrossRef]
    [Google Scholar]
  38. Slavik J. 1997; Application of fluorescent probes in cellular biology. Measurement of intracellular pH. J Lumin 72:575–577
    [Google Scholar]
  39. Thibaut D., Ratet N., Bisch D., Faucher D., Debussche L., Blanche F. 1995; Purification of the two-enzyme system catalysing the oxidation of the d-proline residue of pristinamycin IIB during the last step of pristinamycin IIA biosynthesis. J Bacteriol 177:5199–5205
    [Google Scholar]
  40. Thomas C. R. 1992; Image analysis: putting filamentous micro-organisms in the picture. Trends Biotechnol 10:343–348 [CrossRef]
    [Google Scholar]
  41. Videau D. 1982; Etude de l’activité bactéricide de la pristinamycine. Pathol Biol 30:529–534
    [Google Scholar]
  42. Whitaker A. 1991; Actinomycetes in submerged culture. Appl Biochem Biotechnol 32:23–35
    [Google Scholar]
  43. Yang K. Y., Morikawa M., Shimizu H., Shioya S., Suga K. I., Nihira T., Yamada Y. 1996; Image analysis of mycelial morphology in virginiamycin production by batch culture of Streptomyces virginiae. J Ferment Bioeng 81:7–12 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-10-2671
Loading
/content/journal/micro/10.1099/00221287-146-10-2671
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error