1887

Abstract

The secretion-dedicated chaperone SecB targets a subset of proteins to the translocase by interacting with the carboxyl (C-) terminus of SecA. This region of SecA is highly conserved in Eubacteria, but despite its presence in the SecA, the genome does not appear to contain a gene for a clear homologue of SecB. Deletion of the C-terminus of the SecA yields cells that have normal viability, but that exhibit a response reminiscent of oxidative stress and the loss of a number of secretory proteins from the culture supernatant. Semi-quantitative RT-PCR demonstrates that these proteins are expressed at lower levels. The C-terminus of SecA fused to glutathione -transferase (GST) specifically binds a cytosolic protein, termed MrgA. This protein has been reported to function in relation to oxidative stress, but deletion of the gene does not result in a secretion defect nor does it cause an oxidative stress response. It is concluded that the C-terminus of the SecA is not essential for secretion and viability.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-10-2573
2000-10-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/10/1462573a.html?itemId=/content/journal/micro/10.1099/00221287-146-10-2573&mimeType=html&fmt=ahah

References

  1. Asai K., Kawamura F., Sadaie Y., Takahashi H. 1997; Isolation and characterization of a sporulation initiation mutation in the Bacillus subtilis secA gene. J Bacteriol 179:544–547
    [Google Scholar]
  2. Asai K., Fujita M., Kawamura F., Takahashi H., Kobayashi Y., Sadaie Y. 1998; Restricted transcription from sigma H or phosphorylated spoOA dependent promoters in the temperature sensitive secA341 mutant of Bacillus subtilis. Biosci Biotechnol Biochem 62:1707–1713 [CrossRef]
    [Google Scholar]
  3. Antelmann H., Engelmann S., Schmid R., Hecker M. 1996; General and oxidative stress responses in Bacillus subtilis: cloning, expression, and mutation of the alkyl hydroperoxide reductase operon. J Bacteriol 178:6571–6578
    [Google Scholar]
  4. Behrmann M., Koch H.-G., Hengelage T., Wieseler B., Hoffschulte H. K., Müller M. 1998; Requirements for the translocation of elongation-arrested, ribosome-associated OmpA across the plasma membrane of Escherichia coli. J Biol Chem 273:13898–13904 [CrossRef]
    [Google Scholar]
  5. Bol D. K., Yasbin R. E. 1994; Analysis of the dual regulatory mechanisms controlling expression of the vegetative catalase gene of Bacillus subtilis. J Bacteriol 176:6744–6748
    [Google Scholar]
  6. Bolhuis A., Broekhuizen C. P., Sorokin A., van Roosmalen M., Venema G., Bron S., Quax W. J., van Dijl J. M. 1998; SecDF of Bacillus subtilis, a molecular siamese twin required for the efficient secretion of proteins. J Biol Chem 274:21217–21224
    [Google Scholar]
  7. Breitling R., Schlott B., Behnke D. 1994; Modulation of the spc operon affects growth and protein secretion in Bacillus subtilis. J Basic Microbiol 34:145–155 [CrossRef]
    [Google Scholar]
  8. Breukink E., Nouwens N., van Raalte A., Mizushima S., Tommassen J., de Kruijff B. 1995; The carboxyterminus of SecA is involved in both lipid binding and SecB binding. J Biol Chem 270:7902–7907 [CrossRef]
    [Google Scholar]
  9. Bsat N., Chen L., Helmann J. D. 1996; Mutation of the Bacillus subtilis alkyl hydroperoxide reductase (ahpCF) operon reveals compensatory interactions among hydrogen peroxide stress genes. J Bacteriol 178:6579–6586
    [Google Scholar]
  10. Bunai K., Takamatsu H., Orinaka T., Oguro A., Nakamura K., Yamane K. 1996; Bacillus subtilis Ffh, a homologue of mammalian SRP, can intrinsically bind to the precursors of secretory proteins. Biochem Biophys Res Commun 227:762–767 [CrossRef]
    [Google Scholar]
  11. Bunai K., Yamada K., Hayashi K., Nakamura K., Yamane K. 1999; Enhancing effect of Bacillus subtilis Ffh, a homologue of the SRP54 subunit of the mammalian signal recognition particle, on the binding of SecA to precursors of secretory proteins in vitro. J Biochem 125:151–159 [CrossRef]
    [Google Scholar]
  12. Chen L., Helmann J. D. 1995; Bacillus subtilis MrgA is a Dps(PexB) homologue: evidence for metalloregulation of an oxidative stress gene. Mol Microbiol 18:295–300 [CrossRef]
    [Google Scholar]
  13. Chen L., Keramati L., Helmann J. D. 1995; Coordinate regulation of Bacillus subtilis stress genes by hydrogen peroxide and metal ions. Proc Natl Acad Sci USA 92:8190–8194 [CrossRef]
    [Google Scholar]
  14. Collier D. N. 1994a; Escherichia coli signal peptides direct inefficient secretion of an outer membrane protein (OmpA) and periplasmic proteins (maltose-binding protein, ribose-binding proteins, and alkaline phosphatase) in Bacillus subtilis. J Bacteriol 176:3013–3020
    [Google Scholar]
  15. Collier D. N. 1994b; Expression of Escherichia coli SecB in Bacillus subtilis facilitates secretion of the SecB-dependent maltose-binding protein of E. coli. J Bacteriol 176:4937–4940
    [Google Scholar]
  16. Dartois V., Débarbouillé M., Kunst F., Rapoport G. 1998; Characterization of a novel member of the DegS–DegU affected by salt stress in Bacillus subtilis. J Bacteriol 180:1855–1861
    [Google Scholar]
  17. Den Blaauwen T., Terpetschnig E., Lakowicz J. R., Driessen A. J. M. 1997; Interaction of SecB with soluble SecA. FEBS Lett 416:35–38 [CrossRef]
    [Google Scholar]
  18. Driessen A. J. M. 1996; Translocation of proteins across the bacterial cytoplasmic membrane. In Handbook of Biophysics vol. 2 Transport Processes in Membranes pp. 759–790Edited by Konings W. N., Kaback H. R., Lolkema J. S. Amsterdam: Elsevier;
    [Google Scholar]
  19. Fekkes P., van der Does C., Driessen A. J. M. 1997; The molecular chaperone SecB is released from the carboxy-terminus of SecA during initiation of precursor protein translocation. EMBO J 16:6105–6113 [CrossRef]
    [Google Scholar]
  20. Fekkes P., de Wit J. G., van der Wolk J. P. W., Kimsey H. H., Kumamoto C. A., Driessen A. J. M. 1998; Preprotein transfer to the Escherichia coli translocase requires the cooperative binding of SecB and the signal sequence to SecA. Mol Microbiol 29:1179–1190 [CrossRef]
    [Google Scholar]
  21. Fekkes P., de Wit J. G., Boorsma A., Friesen R. H., Driessen A. J. M. 1999; Zinc stabilizes the SecB binding site of SecA. Biochemistry 38:5111–5116 [CrossRef]
    [Google Scholar]
  22. Foster S. J. 1993; Molecular analysis of three major wall-associated proteins from Bacillus subtilis 168: evidence for processing of the product of a gene encoding a 258 kDa precursor two-domain ligand-binding protein. Mol Microbiol 8:299–310 [CrossRef]
    [Google Scholar]
  23. Hartl F.-U., Lecker S., Schiebel E., Hendrick J. P., Wickner W. 1990; The binding of SecB to SecA to SecY/E mediates preprotein targeting to the Escherichia coli membrane. Cell 63:269–279 [CrossRef]
    [Google Scholar]
  24. Hirose I., Sano K., Shioda I., Kumano M., Nakamura K., Yamane K. 2000; Proteome analysis of Bacillus subtilis extracellular proteins: a two-dimensional protein electrophoretic study. Microbiology 146:65–75
    [Google Scholar]
  25. Honda K., Nakamura K., Nishiguchi M., Yamane K. 1993; Cloning and characterisation of a Bacillus subtilis gene encoding a homolog of the 54-kilodalton subunit of mammalian signal recognition particle and Escherichia coli Ffh. J Bacteriol 175:4885–4894
    [Google Scholar]
  26. Jeong S. M., Yoshikawa H., Takahashi H. 1993; Isolation and characterization of the secE homologue gene of Bacillus subtilis. Mol Microbiol 10:133–142 [CrossRef]
    [Google Scholar]
  27. Klose M., Schimz K.-L., van der Wolk J., Driessen A. J. M., Freudl R. 1993; Lysine 106 of the Bacillus subtilis SecA protein is required for functional complementation in Escherichia coli secA mutants in vivo. J Biol Chem 268:4504–4510
    [Google Scholar]
  28. Kumamoto C. A. 1989; Escherichia coli SecB protein associates with exported protein precursors in vivo. Proc Natl Acad Sci USA 86:5320–5324 [CrossRef]
    [Google Scholar]
  29. Kumamoto C. A. 1991; Molecular chaperones and protein translocation across the Escherichia coli inner membrane. Mol Microbiol 5:19–22 [CrossRef]
    [Google Scholar]
  30. Kumamoto C. A., Francetiç O. 1993; Highly selective binding by an Escherichia coli chaperone protein in vivo. J Bacteriol 175:2184–2188
    [Google Scholar]
  31. Kunst F., Rapoport G. 1995; Salt stress is an environmental signal affecting degradative enzyme synthesis in Bacillus subtilis. J Bacteriol 177:2403–2407
    [Google Scholar]
  32. Kunst F., Ogasawara N., Moszer I.148 other authors 1997; The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390:249–256 [CrossRef]
    [Google Scholar]
  33. Lecker S., Lill R., Ziegelhoffer T., Georgopoulos C., Bassford P. J., Kumamoto C. A., Wickner W. 1989; Three pure chaperone proteins of Escherichia coli – SecB, trigger factor and GroEL – form soluble complexes with precursor proteins in vitro. EMBO J 8:2703–2709
    [Google Scholar]
  34. Leloup L., Haddaoui E.-A., Chambert R., Petit-Glatron M. F. 1997; Characterization of the rate-limiting step of the secretion of Bacillus subtilis α-amylase overproduced during the exponential phase of growth. Microbiology 143:3295–3303 [CrossRef]
    [Google Scholar]
  35. Luirink J., Hagen-Jongman C. M., van der Weijden C. C., Oudega B., High S., Dobberstein B., Kusters R. 1994; An alternative protein targeting pathway in Escherichia coli: studies on the role of FtsY. EMBO J 13:2289–2296
    [Google Scholar]
  36. Meens J., Frings E., Klose M., Freudl R. 1993; An outer membrane protein (OmpA) of Escherichia coli can be secreted across the cytoplasmic membrane of Bacillus subtilis. Mol Microbiol 9:847–855 [CrossRef]
    [Google Scholar]
  37. Meens J., Herbort M., Klein M., Freudl R. 1997; Use of the pre-pro part of Staphylococcus hyicus lipase as a carrier for secretion of Escherichia coli outer membrane protein A (OmpA) prevents proteolytic degradation of OmpA by cell-associated protease(s) in two different gram-positive bacteria. Appl Environ Microbiol 63:2814–2820
    [Google Scholar]
  38. Oguro A., Kakeshita H., Honda K., Takamatsu H., Nakamura K., Yamane K. 1995; srb: a Bacillus subtilis gene encoding a homologue of the alpha-subunit of the mammalian signal recognition particle receptor. DNA Res 2:95–100 [CrossRef]
    [Google Scholar]
  39. Oguro A., Kakeshita H., Takamatsu H., Nkamura K., Yamane K. 1996; The effect of Srb, a homologue of the mammalian SRP receptor alpha-subunit, on Bacillus subtilis growth and protein translocation. Gene 172:17–24 [CrossRef]
    [Google Scholar]
  40. Overhoff B., Klein M., Spies M., Freudl R. 1991; Identification of a gene fragment which codes for the 364 amino-terminal amino acid residues of a SecA homologue from Bacillus subtilis: further evidence for the conservation of the protein export apparatus in gram-positive and gram-negative bacteria. Mol Gen Genet 228:417–423
    [Google Scholar]
  41. Powers T., Walter P. 1997; Co-translational protein targeting catalyzed by the Escherichia coli signal recognition particle and its receptor. EMBO J 16:4880–4886 [CrossRef]
    [Google Scholar]
  42. Randall L. L., Topping T. B., Hardy S. J. S., Pavlov M. Y., Freistroffer D. V., Ehrenberg M. 1997; Binding of SecB to ribosome-bound polypeptide has the same characteristics as binding to full-length denatured proteins. Proc Natl Acad Sci USA 94:802–807 [CrossRef]
    [Google Scholar]
  43. Römisch K., Webb J., Herz J., Prehn S., Frank R., Vingron M., Dobberstein B. 1989; Homology of 54K protein of signal recognition particle, docking protein and two E. coli proteins with putative GTP-binding domains. Nature 340:478–482 [CrossRef]
    [Google Scholar]
  44. Sadaie Y., Takamatsu H., Nakamura K., Yamane K. 1991; Sequencing reveals similarity of the wild-type div + gene of Bacillus subtilis to the Escherichia coli secA gene. Gene 98:101–105 [CrossRef]
    [Google Scholar]
  45. Shimizu H., Nishiyama K., Tokuda H. 1997; Expression of gpsA encoding biosynthetic sn-glycerol 3-phosphate dehydrogenase suppresses both the LB- phenotype of a secB null mutant and the cold-sensitive phenotype of a secG null mutant. Mol Microbiol 26:1013–1021 [CrossRef]
    [Google Scholar]
  46. Struck J. C. R., Hartmann R. K., Toschka H. Y., Erdmann V. A. 1989; Transcription and processing of Bacillis subtilis small cytoplasmic RNA. Mol Gen Genet 215:478–482 [CrossRef]
    [Google Scholar]
  47. Suh J. W., Boylan S. A., Thomas S. M., Dolan K. M., Oliver D. B., Price C. W. 1990; Isolation of a secY homologue from Bacillus subtilis: evidence for a common protein export pathway in eubacteria. Mol Microbiol 4:305–314 [CrossRef]
    [Google Scholar]
  48. Swaving J., van Wely K. H. M., Driessen A. J. M. 1999; Host specific functions of preprotein translocase subunits. J Bacteriol 181:7021–7027
    [Google Scholar]
  49. Valent Q. A., de Gier J.-W. L., von Heijne G., Kendall D. A., ten Hagen-Jongeman C. M., Oudega B., Luirink J. 1997; Nascent membrane and presecretory proteins synthesized in Escherichia coli associate with signal recognition particle and trigger factor. Mol Microbiol 25:53–64 [CrossRef]
    [Google Scholar]
  50. Valent Q. A., Scotti P. A., High S., de Gier J.-W. L., von Heijne G., Lentzen G., Wintermeyer W., Oudega B., Luirink J. 1998; The Escherichia coli SRP and Sec targeting pathways converge at the translocon. EMBO J 17:2504–2512 [CrossRef]
    [Google Scholar]
  51. Völker U., Engelmann S., Maul B., Riethdorf S., Völker A., Schmid R., Mach H., Hecker M. 1994; Analysis of the induction of general stress proteins of Bacillus subtilis. Microbiology 140:741–752 [CrossRef]
    [Google Scholar]
  52. van Wely K. H. M., Swaving J., Driessen A. J. M. 1998; Translocation of the precursor of α-amylase into Bacillus subtilis membrane vesicles. Eur J Biochem 255:690–697 [CrossRef]
    [Google Scholar]
  53. van Wely K. H. M., Swaving J., Broekhuizen C. P., Rose M., Quax W. J., Driessen A. J. M. 1999; Functional identification of the product of the Bacillus subtilis yvaL gene as a SecG homologue. J Bacteriol 181:1786–1792
    [Google Scholar]
  54. Yang M. Y., Ferrari E., Henner D. J. 1984; Cloning of the neutral protease gene of Bacillus subtilis and the use of the cloned gene to create an in vitro-derived deletion mutation. J Bacteriol 160:15–21
    [Google Scholar]
  55. Young F. E. 1967; Competence in Bacillus subtilis transformation system. Nature 213:773–775 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-10-2573
Loading
/content/journal/micro/10.1099/00221287-146-10-2573
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error