1887

Abstract

It has been demonstrated previously that motile cells transform into non-motile cyst-forms when incubated for several weeks in BSKII (a complex medium) lacking rabbit serum. cells cannot synthesize fatty acids and serum is thought to provide a source of fatty acids and lipids. When cells were serum-starved in defined RPMI medium, ~90% of the cells formed spherical cysts within 48 h. Cyst formation was inhibited by tetracycline. Cyst opening and recovery of vegetative cells was rapidly induced by the addition of either BSKII or rabbit serum. The percentage of viable cells recovered from cysts ranged from 2·9% to 52·5%. Viability was inversely proportional to cyst age. Protein synthesis by during serum starvation was examined by labelling cells with TranS-Label and analysing the labelled proteins by two-dimensional gel electrophoresis and fluorography. The synthesis of over 20 proteins was induced during serum starvation. Western blots of proteins from vegetative cells and cysts probed with sera from either -infected humans or monkeys revealed that several cyst proteins were antigenic. These data suggest that cells of , although possessing a small genome and extremely limited biosynthetic capabilities, rapidly respond to conditions of serum starvation by inducing changes in protein synthesis and cell morphology. This study may help explain how cells of can survive periods of nutrient deprivation in different hosts and host tissues.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-1-119
2000-01-01
2024-12-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/1/1460119a.html?itemId=/content/journal/micro/10.1099/00221287-146-1-119&mimeType=html&fmt=ahah

References

  1. Aberer E., Koszik F., Silberer M. 1997; Why is chronic Lyme borreliosis chronic?. Clin Infect Dis 25:Suppl 1S64–S70 [CrossRef]
    [Google Scholar]
  2. Akins D. R., Bourell K. W., Caimano M. J., Norgard M. V., Radolf J. D. 1998; A new animal model for studying Lyme disease spirochetes in a mammalian host adapted state. J Clin Invest 101:2240–2250 [CrossRef]
    [Google Scholar]
  3. American Public Health Association 1975 Standard Methods for the Examination of Water and Wastewater, 14th edn. pp. 923–927 New York: American Public Health Association;
    [Google Scholar]
  4. Barbour A. G. 1984; Isolation and cultivation of Lyme disease spirochetes. Yale J Biol Med 57:521–525
    [Google Scholar]
  5. Barbour A., Hayes S. F. 1986; Biology of Borrelia species. Microbiol Rev 50:381–400
    [Google Scholar]
  6. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  7. Brorson O., Brorson S. H. 1997; Transformation of cystic forms of Borrelia burgdorferi to normal, motile spirochetes. Infection 25:240–245 [CrossRef]
    [Google Scholar]
  8. Brorson O., Brorson S. H. 1998a; In vitro conversion of Borrelia burgdorferi to cystic forms in spinal fluid, and transformation to mobile spirochetes by incubation in BSK-H media. Infection 26:144–150 [CrossRef]
    [Google Scholar]
  9. Brorson O., Brorson S. H. 1998b; A rapid method for generation of cystic forms of Borrelia burgdorferi, and their reversal to mobile spirochetes. APMIS 106:1131–1141 [CrossRef]
    [Google Scholar]
  10. Burgdorfer W., Hayes S. F. 1989; Vector–spirochete relationship in louse-borne and tickborne borreliosis with emphasis on Lyme disease. In Advances of Disease Vector Research pp. 127–150Edited by Harris K. F. New York: Springer;
    [Google Scholar]
  11. Burgdorfer W., Barbour A. G., Hayes S. F., Benach J. L., Grunwaldt E., Davis J. P. 1982; Lyme disease, a tick-borne spirochetosis?. Science 216:1317–1319 [CrossRef]
    [Google Scholar]
  12. Carreiro M. M., Laux D. C., Nelson D. R. 1990; Characterization of the heat shock response and identification of heat shock antigens of B. burgdorferi. Infect Immun 58:2186–2191
    [Google Scholar]
  13. Cashel M., Rudd K. E. 1987; The stringent response. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology pp. 1410–1438Edited by Neidhardt F. C.others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  14. Das S., Barthold S. W., Giles S. S., Montgomery R. R., Telford S. R. III, Fikrig E. 1997; Temporal pattern of Borrelia burgdorferi p21 expression in ticks and mammalian hosts. J Clin Invest 99:987–995 [CrossRef]
    [Google Scholar]
  15. Fikrig E., Feng W., Aversa J., Schoen R. T., Flavell R. A. 1998; Differential expression of Borrelia burgdorferi genes during erythema migrans and Lyme arthritis. J Infect Dis 178:1198–1201 [CrossRef]
    [Google Scholar]
  16. Fraser C. M., Casjens S., Huang W. M.35 other authors 1997; Genomic sequence of a Lyme disease spirochaete,. Borrelia burgdorferi. Nature 390:580–586 [CrossRef]
    [Google Scholar]
  17. Garcia T., Otto K., Kjelleberg S., Nelson D. R. 1997; Growth of Vibrio anguillarum in salmon intestinal mucus. Appl Environ Microbiol 63:1034–1039
    [Google Scholar]
  18. Garon C. F., Dorward D. W., Corwin M. D. 1989; Structural features of Borrelia burgdorferi – the Lyme disease spirochete: silver staining for nucleic acids. Scanning Microsc(Suppl 3)109–115
    [Google Scholar]
  19. Girouard L., Laux D. C., Jindal S., Nelson D. R. 1993; Immune recognition of human Hsp60 by Lyme disease patient sera. Microb Pathog 14:287–297 [CrossRef]
    [Google Scholar]
  20. Hulinska D., Bartak P., Hercogova J., Hancil J., Basta J., Schramlova J. 1994; Electron microscopy of Langerhans cells and Borrelia burgdorferi in Lyme disease patients. Zentbl Bakteriol 280:348–359 [CrossRef]
    [Google Scholar]
  21. Johnson R. C., Norton Hughes C. A. 1992; The Genus Borrelia. In The Prokaryotes: a Handbook on Habitats, Isolation and Identification of Bacteria pp. 3560–3566Edited by Starr M. P., Stolp H., Trüper A., Balows H. G. New York: Springer;
    [Google Scholar]
  22. Kaiser D. 1984; Regulation of multicellular development in Myxobacteria. In Microbial Development pp. 197–218Edited by Losick R., Shapiro L. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  23. Kersten A., Poitscheck S., Rauch S., Aberer E. 1995; Effects of penicillin, ceftriaxone, and doxycycline on morphology of Borrelia burgdorferi. Antimicrob Agents Chemother 39:1127–1133 [CrossRef]
    [Google Scholar]
  24. Kjelleberg S., Hermansson P., Marden P., Jones G. W. 1987; The transient phase between growth and nongrowth of heterotrophic bacteria, with emphasis on the marine environment. Annu Rev Microbiol 41:25–49 [CrossRef]
    [Google Scholar]
  25. Laemmli U. K. 1970; Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  26. Losick R., Youngman P. 1984; Endospore formation in Bacillus. In Microbial Development pp. 63–88Edited by Losick R., Shapiro L. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  27. Nyström T. 1993; Global systems approach to the physiology of the starved cell. In Starvation in Bacteria pp. 129–150Edited by Kjelleberg S. New York: Plenum;
    [Google Scholar]
  28. Nyström T., Kjelleberg S. 1989; Role of protein synthesis in the cell division and starvation-induced resistance to autolysis of a marine Vibrio during the initial phases of starvation. J Gen Microbiol 135:1599–1606
    [Google Scholar]
  29. Ostling J., Holmquist L., Kjelleberg S. 1996; Global analysis of the carbon starvation response of a marine Vibrio species with disruptions in genes homologous to relA and spoT. J Bacteriol 178:4901–4908
    [Google Scholar]
  30. Philipp M. T., Aydintug M. K., Bohm R. P.7 other authors 1993; Early and early disseminated phases of Lyme disease in the rhesus monkey: a model for infection in humans. Infect Immun 61:3047–3059
    [Google Scholar]
  31. Preac Mursic V., Weber K., Pfister H. W., Wilske B., Gross B., Baumann A., Prokop J. 1989; Formation and cultivation of Borrelia burgdorferi spheroplast l-form variants. Infection 17:355–359 [CrossRef]
    [Google Scholar]
  32. Roberts E. D., Bohm R. P., Lowrie R. C., Habicht G., Katona L., Piesman J., Philipp M. 1998; Pathogenesis of Lyme neuroborreliosis in the rhesus monkey: the early disseminated and chronic phases of disease in the peripheral nervous system. J Infect Dis 178:722–732 [CrossRef]
    [Google Scholar]
  33. Schwan T. G., Piesman J., Golde W. T., Dolan M. C., Rosa P. A. 1995; Induction of an outer surface protein on Borrelia burgdorferi during tick feeding. Proc Natl Acad Sci USA 92:2909–2913 [CrossRef]
    [Google Scholar]
  34. Scorpio A., Johnson P., Laquerre A., Nelson D. R. 1994; Subcellular localization and chaperone functions of Hsp60 and Hsp70 in Borrelia burgdorferi. J Bacteriol 176:6449–6456
    [Google Scholar]
  35. Seyfzadeh M., Keener J., Nomura M. 1993; spoT-dependent accumulation of guanosine tetraphosphate in response to fatty acid starvation in Escherichia coli. Proc Natl Acad Sci USA 90:11004–11008 [CrossRef]
    [Google Scholar]
  36. Siegele D. A., Kolter R. 1992; Life after log. J Bacteriol 174:345–348
    [Google Scholar]
  37. de Silva A. M., Fikrig E. 1997; Arthropod and host-specific gene expression by Borrelia burgdorferi. J Clin Invest 99:377–379 [CrossRef]
    [Google Scholar]
  38. de Silva A. M., Telford S. R., Brunet L. R., Barthold S. W., Fikrig E. 1996; Borrelia burgdorferi OspA is an arthropod-specific transmission-blocking Lyme disease vaccine. J Exp Med 183:271–275 [CrossRef]
    [Google Scholar]
  39. Steere A. C. 1989; Lyme disease. N Engl J Med 321:586–596 [CrossRef]
    [Google Scholar]
  40. Suk K., Das S., Sun W., Jwang B., Barthold S. W., Flavell R. A., Fikrig E. 1995; Borrelia burgdorferi genes selectively expressed in the infected host. Proc Natl Acad Sci USA 92:4269–4273 [CrossRef]
    [Google Scholar]
  41. Towbin H., Staehelin T., Gordon J. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354 [CrossRef]
    [Google Scholar]
  42. Williams K. R., Samandar S. M., Stone K. L., Saylor M., Rush J. 1996; Matrix assisted-laser desorption ionization mass spectrometry as a complement to internal protein sequencing. In The Protein Protocols Handbook pp. 541–555Edited by Walker J. M. Totowa: Humana Press;
    [Google Scholar]
  43. Zhang J.-R., Hardham J. M., Barbour A. G., Norris S. J. 1997; Antigenic variation in Lyme disease borreliae by promiscuous recombination of VMP-like sequence cassettes. Cell 89:275–285 [CrossRef]
    [Google Scholar]
/content/journal/micro/10.1099/00221287-146-1-119
Loading
/content/journal/micro/10.1099/00221287-146-1-119
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error