1887

Abstract

A multicopper oxidase gene from the human pathogenic yeast was isolated and characterized. An open reading frame of 1872 bp, designated , was identified, encoding a predicted protein of 624 amino acids and a molecular mass of 705 kDa. The identity between the deduced amino acid sequences of and the gene is 55%. was localized on chromosome 6. A null mutant (Δ/Δ) was constructed by sequential gene disruption. Unlike the SC5314 wild-type strain the Δ mutant was unable to grow in low-iron medium. The lack of growth of a Δ mutant in iron-limited medium was compensated by transformation with . The null mutant strain showed no change in pathogenicity compared with the wild-type strain in the mouse model of systemic candidiasis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-145-9-2415
1999-09-01
2019-11-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/145/9/1452415a.html?itemId=/content/journal/micro/10.1099/00221287-145-9-2415&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipmann, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403-410.[CrossRef]
    [Google Scholar]
  2. Askwith, C., Eide, D., Van Ho, A. V., Bernard, P. S., Li, L., Davis-Kaplan, S., Sipe, D. M. & Kaplan, J. ( 1994; ). The FET3 gene of Saccharomyces cerevisiae encodes a multicopper oxidase required for ferrous iron uptake. Cell 76, 403-410.[CrossRef]
    [Google Scholar]
  3. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. & Struhl, K. (1995). Current Protocols in Molecular Biology, New York: Wiley.
  4. Boeke, J. D., LaCroute, F. & Fink, G. R. ( 1984; ). A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet 197, 345-346.[CrossRef]
    [Google Scholar]
  5. Borg-von Zepelin, M. & Wagner, T. ( 1995; ). Fluorescence assay for the detection of adherent Candida yeasts to target cells in microtest plates. Mycoses 38, 339-347.[CrossRef]
    [Google Scholar]
  6. Dancis, A., Yuan, D. S., Haile, D., Askwith, C., Eide, D., Moehle, C., Kaplan, J. & Klausner, R. D. ( 1994; ). Molecular characterization of a copper transport protein in Saccharomyces cerevisiae: an unexpected role for copper in iron transport. Cell 76, 393-402.[CrossRef]
    [Google Scholar]
  7. De Silva, D. M., Askwith, C. C., Eide, D. & Kaplan, J. ( 1995; ). The FET3 gene product required for high affinity iron transport in yeast is a cell surface ferroxidase. J Biol Chem 270, 1098-1101.[CrossRef]
    [Google Scholar]
  8. Dix, D., Bridgham, J., Broderius, M. & Eide, D. ( 1997; ). Characterization of the FET4 protein of yeast. J Biol Chem 272, 11770-11777.[CrossRef]
    [Google Scholar]
  9. Eck, R., Bergmann, C., Ziegelbauer, K., Schönfeld, W. & Künkel, W. ( 1997; ). A neutral trehalase gene from Candida albicans: molecular cloning, characterization and disruption. Microbiology 143, 3747-3756.[CrossRef]
    [Google Scholar]
  10. Eide, D. & Guarente, L. ( 1992; ). Increased dosage of a transcriptional activator gene enhances iron-limited growth of Saccharomyces cerevisiae. J Gen Microbiol 138, 347-354.[CrossRef]
    [Google Scholar]
  11. Eide, D., Davis-Kaplan, S., Jordan, I., Sipe, D. & Kaplan, J. ( 1992; ). Regulation of iron uptake in Saccharomyces cerevisiae. J Biol Chem 267, 20774-20781.
    [Google Scholar]
  12. Fonzi, W. A. & Irvine, M. Y. ( 1993; ). Isogenic strain construction and gene mapping in Candida albicans. Genetics 134, 717-728.
    [Google Scholar]
  13. Fratti, R. A., Belanger, P. H., Ghannoum, M. A., Edwards, J. E.Jr & Filler, S. G. ( 1998; ). Endothelial cell injury caused by Candida albicans is dependent on iron. Infect Immun 66, 191-196.
    [Google Scholar]
  14. Georgatsou, E. & Alexandraki, D. ( 1994; ). Two distinctly regulated genes are required for ferric reduction, the first step of iron uptake in Saccharomyces cerevisiae. Mol Cell Biol 14, 3065-3073.
    [Google Scholar]
  15. von Heijne, G. ( 1983; ). Pattern of amino acids near signal-sequence cleavage sites. Eur J Biochem 133, 17-21.[CrossRef]
    [Google Scholar]
  16. Henikoff, S. & Henikoff, J. G. ( 1994; ). Protein family classification based on searching a database of blocks. Genomics 19, 97-107.[CrossRef]
    [Google Scholar]
  17. Holzberg, M. & Artis, W. M. ( 1983; ). Hydroxamate siderophore production by opportunistic and systemic fungal pathogens. Infect Immun 40, 1134-1139.
    [Google Scholar]
  18. Ismail, A., Bedell, G. W. & Lupan, D. M. ( 1985; ). Siderophore production by the pathogenic yeast, Candida albicans. Biochem Biophys Res Commun 130, 885-891.[CrossRef]
    [Google Scholar]
  19. Klebe, I. K., Harris, I. V., Sharp, D. & Douglas, M. G. ( 1983; ). A general method for polyethylenglycol-induced genetic transformation of bacteria and yeast. Gene 25, 333-341.[CrossRef]
    [Google Scholar]
  20. Lloyd, A. T. & Sharp, P. M. ( 1992; ). Evolution of codon usage patterns: the extent and nature of divergence between Candida albicans and Saccharomyces cerevisiae. Nucleic Acids Res 20, 5289-5295.[CrossRef]
    [Google Scholar]
  21. Morrissey, J. A., Williams, P. H. & Cashmore, A. M. ( 1996; ). Candida albicans has a cell-associated ferric-reductase activity which is regulated in response to levels of iron and copper. Microbiology 142, 485-492.[CrossRef]
    [Google Scholar]
  22. Morrow, B. E., Ju, Q. & Warner, J. R. . ( 1993; ). A bipartic DNA-binding domain in yeast Reb1p. Mol Cell Biol 13, 1173-1182.
    [Google Scholar]
  23. Plempel, M. ( 1984; ). Antimycotic activity of Bay N 7133 in animal experiments. J Antimicrob Chemother 13, 447-463.[CrossRef]
    [Google Scholar]
  24. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  25. Spizzo, T., Byersdorfer, C., Duesterhoeft, S. & Eide, D. ( 1997; ). The yeast FET5 gene encodes a FET3-related multicopper oxidase implicated in iron transport. Mol Gen Genet 256, 547-556.
    [Google Scholar]
  26. Stearman, R., Yuan, D. S., Yamaguchi-Iwai, Y., Klausner, R. D. & Dancis, A. ( 1996; ). A permease–oxidase complex involved in high-affinity iron uptake in yeast. Science 271, 1552-1557.[CrossRef]
    [Google Scholar]
  27. Sweet, S. P. & Douglas, L. J. ( 1991; ). Effect of iron concentration on siderophore synthesis and pigment production by Candida albicans. FEMS Microbiol Lett 80, 87-92.[CrossRef]
    [Google Scholar]
  28. Swoboda, R. K., Bertram, G., Budge, S., Gow, N. A. R., Gooday, W. & Brown, A. J. P. ( 1995; ). Structure and regulation of the HSP90 gene from the pathogenic fungus Candida albicans. Infect Immun 63, 4506-4514.
    [Google Scholar]
  29. Yamaguchi-Iwai, Y., Dancis, A. & Klausner, R. D. ( 1995; ). AFT1: a mediator of iron regulated transcriptional control in Saccharomyces cerevisiae. EMBO J 14, 1231-1239.
    [Google Scholar]
  30. Yuan, D. S., Stearman, R., Dancis, A., Dunn, T., Beeler, T. & Klausner, R. D. ( 1995; ). The Menkes/Wilson disease gene homologue in yeast provides copper to a ceruloplasmin-like oxidase required for iron uptake. Proc Natl Acad Sci USA 92, 2632-2636.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-145-9-2415
Loading
/content/journal/micro/10.1099/00221287-145-9-2415
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error