Skip to content
1887

Abstract

An internal adenylyltransferase gene () fragment from was amplified using heterologous PCR primers derived from consensus motifs. The sequence had significant similarity to bacterial genes, and included a motif typical of the C-terminal adenylyltransferase domain of GlnE. from lies on the I-C fragment of the chromosome and is localized near (encoding glutamine synthetase I, GSI) and (encoding GSII). To analyse the function of GlnE in , ( E4) and ( HT107) gene replacement mutants were constructed. The GSI activity of the mutant was not down-regulated after an ammonium shock. However, the GSI activity of the wild-type cells decreased to 60% of the original activity. The mutant is not glutamine auxotrophic, but in the γ-glutamyltransferase assay no GSI activity was detected in unshifted and shifted HT107 cells. By snake venom phosphodiesterase treatment the GSI activity in the wild-type can be reconstituted, whereas no alteration is observed in the E4 mutant. Additionally, the loss of short-term GSI regulation in the E4 mutant was accompanied by an increased glutamine:glutamate ratio.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-145-9-2313
1999-09-01
2025-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/145/9/1452313a.html?itemId=/content/journal/micro/10.1099/00221287-145-9-2313&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller E., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  2. Atkinson M. R., Ninfa A. J. 1998; Role of the GlnK signal transduction protein in the regulation of nitrogen assimilation in Escherichia coli. Mol Microbiol 29:431–447 [CrossRef]
    [Google Scholar]
  3. Bascarán V, Hardisson C., Braña A. F. 1989; Regulation of nitrogen catabolic enzymes in Streptomyces clavuligerus. J Gen Microbiol 135:2465–2474
    [Google Scholar]
  4. Behrmann I., Hillemann D., Pühler A, Strauch E., Wohlleben W. 1990; Overexpression of a Streptomyces viridochromogenes gene (glnII) encoding a glutamine synthetase similar to those of eukaryotes confers resistance against the antibiotic phosphinothricyl-alanyl-alanine. J Bacteriol 172:5326–5334
    [Google Scholar]
  5. Braña A. F., Paiva N., Demain A. L. 1986; Pathways and regulation of ammonium assimilation in Streptomyces clavuligerus. J Gen Microbiol 132:1305–1317
    [Google Scholar]
  6. Bruntner C., Bormann C. 1998; The Streptomyces tendae TÜ901 l-lysine 2-aminotransferase catalyzes the initial reaction in nikkomycin D biosynthesis. Eur J Biochem 254:347–355 [CrossRef]
    [Google Scholar]
  7. Bullock W. O., Fernandez J. M., Short J. M. 1987; XL1-Blue, a high efficiency plasmid transforming recA Escherichia coli strain with beta galactosidase selection. BioTechniques 5:376–378
    [Google Scholar]
  8. Caban C. E., Ginsburg A. 1976; Glutamine synthetase adenylyltransferase from Escherichia coli: purification and physical and chemical properties. Biochemistry 15:1569–1580 [CrossRef]
    [Google Scholar]
  9. Cole S. T., Brosch R., Parkhill J.39 other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544 [CrossRef]
    [Google Scholar]
  10. Edmands J., Noridge N., Benson D. 1987; The actinorhizal root nodule symbiont Frankia sp. strain CpI1 has two glutamine synthetases. Proc Natl Acad Sci USA 84:6126–6130 [CrossRef]
    [Google Scholar]
  11. Fisher S. H., Sonenshein A. L. 1977; Glutamine-requiring mutants of Bacillus subtilis. Biochem Biophys Res Commun 79:987–995 [CrossRef]
    [Google Scholar]
  12. Fisher S. H., Wray L. V. Jr 1989; Regulation of glutamine synthetase in Streptomyces coelicolor. J Bacteriol 171:2378–2383
    [Google Scholar]
  13. Fleischmann R. D., Adams M. D., White O.37 other authors 1995; Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512 [CrossRef]
    [Google Scholar]
  14. Gish W., States D. J. 1993; Identification of protein coding regions by database similarity search. Nat Genet 3:266–272 [CrossRef]
    [Google Scholar]
  15. He L., Soupene E., Ninfa A., Kustu S. 1998; Physiological role for the GlnK protein of enteric bacteria: relief of NifL inhibition under nitrogen-limiting conditions. J Bacteriol 180:6661–6667
    [Google Scholar]
  16. van Heeswijk W. C., Rabenberg M., Westerhoff H. V., Kahn D. 1993; The genes of the glutamine synthetase adenylylation cascade are not regulated by nitrogen in Escherichia coli. Mol Microbiol 9:443–457 [CrossRef]
    [Google Scholar]
  17. van Heeswijk W. C., Hoving S., Molenaar D., Stegeman, B, Kahn D., Westerhoff H. V. 1996; An alternative PII protein in the regulation of glutamine synthetase in Escherichia coli. Mol Microbiol 21:133–146 [CrossRef]
    [Google Scholar]
  18. Hillemann D., Dammann T., Hillemann A., Wohlleben W. 1993; Genetic and biochemical characterization of the two glutamine synthetases GSI and GSII of the phosphinothricyl-alanyl-alanine producer, Streptomyces viridochromogenes Tü494. J Gen Microbiol 139:1773–1783 [CrossRef]
    [Google Scholar]
  19. Holm L., Sander C. 1995; DNA polymerase beta belongs to an ancient nucleotidyltransferase superfamily. Trends Biochem Sci 20:345–347 [CrossRef]
    [Google Scholar]
  20. Hopwood D. A. 1967; Genetic analysis and genome structure in Streptomyces coelicolor. Bacteriol Rev 31:373–403
    [Google Scholar]
  21. Hopwood D. A., Bibb M. J., Chater K. F.7 other authors 1985 Genetic Manipulation of Streptomyces: a Laboratory Manual Norwich: John Innes Foundation;
    [Google Scholar]
  22. Jaggi R., van Heeswijk W. C., Westerhoff H. V., Ollis D. L., Vasudevan S. G. 1997; The two opposing activities of adenylyltransferase reside in distinct homologous domains, with intramolecular signal transduction. EMBO J 16:5562–5571 [CrossRef]
    [Google Scholar]
  23. Kumada Y., Takano E., Nagaoka K., Thompson C. J. 1990; Streptomyces hygroscopicus has two glutamine synthetase genes. J Bacteriol 172:5343–5351
    [Google Scholar]
  24. Kumada Y., Benson D. R., Hillemann D., Hosted T. J., Rochefort D. A., Thompson C. J., Wohlleben W., Tateno Y. 1993; Evolution of the glutamine synthetase gene, one of the oldest existing and functioning genes. Proc Natl Acad Sci USA 90:3009–3013 [CrossRef]
    [Google Scholar]
  25. Kunst F., Ogasawara N., Moszer I.148 other authors 1997; The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390:249–256 [CrossRef]
    [Google Scholar]
  26. Kustu S., Hirschman J., Burton D., Jelesko J., Meeks J. C. 1984; Covalent modification of bacterial glutamine synthetase: physiological significance. Mol Gen Genet 197:309–317 [CrossRef]
    [Google Scholar]
  27. Lindroth P., Mopper K. 1979; High performance liquid chromatographic determination of subpicomole amounts of amino acids by precolumn fluorescence derivatization with o-phthaldialdehyde. Anal Chem 51:1667–1674 [CrossRef]
    [Google Scholar]
  28. MacNeil D. J., Gewain K. M., Ruby C. L., Dezeny G., Gibbons P. H., MacNeil T. 1992; Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 111:61–68 [CrossRef]
    [Google Scholar]
  29. Magasanik B. 1996; Regulation of nitrogen utilization. I. Cellular and molecular biology. In Escherichia coli and Salmonella, 2nd edn. pp. 1344–1356Edited by Neidhardt F. C.others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  30. Merida A., Candau P., Florencio F. J. 1991; Regulation of glutamine synthetase activity in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803 by the nitrogen source: effect of ammonium. J Bacteriol 173:4095–4100
    [Google Scholar]
  31. Merrick M. J., Edwards R. A. 1995; Nitrogen control in bacteria. Microbiol Rev 59:604–622
    [Google Scholar]
  32. Miller J. H. 1958 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  33. Oh S. H., Chater K. F. 1997; Denaturation of circular or linear DNA facilitates targeted integrative transformation of Streptomyces coelicolor A3(2): possible relevance to other organisms. J Bacteriol 179:122–127
    [Google Scholar]
  34. Okanishi M., Suzuki K., Umezawa H. 1974; Formation and reversion of streptomycete protoplasts: cultural condition and morphological study. J Gen Microbiol 80:389–400 [CrossRef]
    [Google Scholar]
  35. Pearson W. R., Lipman D. J. 1988; Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 85:2444–2448 [CrossRef]
    [Google Scholar]
  36. Penyige A., Kalmanczhelyi A., Sipos A., Ensign J. C., Barabas G. 1994; Modifications of glutamine synthetase in Streptomyces griseus by ADP-ribosylation and adenylylation. Biochem Biophys Res Commun 204:598–605 [CrossRef]
    [Google Scholar]
  37. Pridmore R. D. 1987; New and versatile cloning-vectors with kanamycin-resistance marker. Gene 56:309–312 [CrossRef]
    [Google Scholar]
  38. Redenbach M., Kieser H. M., Denapaite P., Eichner A., Cullum J., Kinashi H., Hopwood D. A. 1996; A set of ordered cosmids and a detailed genetic and physical map for the 8 Mb Streptomyces coelicolor A3(2) chromosome. Mol Microbiol 21:77–96 [CrossRef]
    [Google Scholar]
  39. Reitzer L. J., Magasanik B. 1987; Ammonia assimilation and the biosynthesis of glutamine, glutamate, aspartate, asparagine, l-alanine and d-alanine. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology pp 302–320Edited by Neidhardt F. C. others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  40. Sambrook J. E., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  41. Schreier H. J. 1993; Biosynthesis of glutamine and glutamate and the assimilation of ammonia. In Bacillus subtilis and Other Gram-positive Bacteria: Biochemistry, Physiology, and Molecular Genetics pp 281–298Edited by Sonenshein A. L., Hoch J. A., Losick R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  42. Schreier H. J., Fisher S. H., Sonenshein A. L. 1985; Regulation of expression from the glnA promoter of Bacillus subtilis requires the glnA gene product. Proc Natl Acad Sci USA 82:3375–3379 [CrossRef]
    [Google Scholar]
  43. Schreier H. J., Brown S. W., Hirschi K. D., Nomellini J. F., Sonenshein A. L. 1989; Regulation of Bacillus subtilis glutamine synthetase gene expression by the product of the glnR gene. J Mol Biol 210:51–63 [CrossRef]
    [Google Scholar]
  44. Schwartz D., Alijah R., Nußbaumer B, Pelzer S., Wohlleben W. 1996; The peptide synthetase gene phsA from Streptomyces viridochromogenes is not juxtaposed with other genes involved in nonribosomal biosynthesis of peptides. Appl Environ Microbiol 62:570–577
    [Google Scholar]
  45. Shapiro B. M., Stadtman E. R. 1970; Glutamine synthetase (E. coli). Methods Enzymol 17:910–922
    [Google Scholar]
  46. Shirahama T., Fumurai T., Okanishi M. 1981; A modified regeneration method for streptomycetes protoplasts. Agric Biol Chem 45:1271–1273 [CrossRef]
    [Google Scholar]
  47. Smith P. K., Krohn R. I., Hermanson G. I.7 other authors 1985; Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85 [CrossRef]
    [Google Scholar]
  48. Southern E. M. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517 [CrossRef]
    [Google Scholar]
  49. Staden R., McLachlan A. D. 1982; Codon preference and its use in identifying protein coding regions in large DNA sequences. Nucleic Acids Res 10:141–156 [CrossRef]
    [Google Scholar]
  50. Stadtman E. R., Mura E., Chock P. B., Rhee S. G. 1980; The interconvertible enzyme cascade that regulates glutamine synthetase activity. In Glutamine: Metabolism, Enzymology and Regulation pp 41–59Edited by Mora J., Palacois R. New York: Academic Press;
    [Google Scholar]
  51. Streicher S., Tyler B. 1981; Regulation of glutamine synthetase activity by adenylylation in the gram-positive bacterium Streptomyces cattleya. Proc Natl Acad Sci USA 87:229–233
    [Google Scholar]
  52. Thompson C. J., Ward J. M., Hopwood D. A. 1980; DNA cloning in Streptomyces: resistance genes from antibiotic-producing species. Nature 286:525–527 [CrossRef]
    [Google Scholar]
  53. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  54. Vara J., Lewandowska-Skarbek M., Wang Y. G, Donadio S., Hutchinson C. R. 1989; Cloning of genes governing the deoxysugar portion of the erythromycin biosynthesis pathway in Saccharopolyspora erythraea (Streptomyces erythreus). J Bacteriol 171:5872–5881
    [Google Scholar]
  55. Vieira J., Messing J. 1982; The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268 [CrossRef]
    [Google Scholar]
  56. Wray L. V. Jr, Fisher S. H. 1988; Cloning and nucleotide sequence of the Streptomyces coelicolor gene encoding glutamine synthetase. Gene 71:247–256 [CrossRef]
    [Google Scholar]
  57. Wray L. V. Jr, Fisher S. H. 1993; The Streptomyces coelicolor glnR gene encodes a protein similar to other bacterial response regulators. Gene 130:145–150 [CrossRef]
    [Google Scholar]
  58. Wray L. V. Jr, Ferson A. E., Rohrer K., Fisher S. H. 1996; TnrA, a transcription factor required for global nitrogen regulation in Bacillus subtilis. Proc Natl Acad Sci USA 17:8841–8845
    [Google Scholar]
  59. Wright F., Bibb M. J. 1992; Codon usage in the G+C rich Streptomyces genome. Gene 113:55–65 [CrossRef]
    [Google Scholar]
/content/journal/micro/10.1099/00221287-145-9-2313
Loading
/content/journal/micro/10.1099/00221287-145-9-2313
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error