1887

Abstract

An internal adenylyltransferase gene () fragment from was amplified using heterologous PCR primers derived from consensus motifs. The sequence had significant similarity to bacterial genes, and included a motif typical of the C-terminal adenylyltransferase domain of GlnE. from lies on the I-C fragment of the chromosome and is localized near (encoding glutamine synthetase I, GSI) and (encoding GSII). To analyse the function of GlnE in , ( E4) and ( HT107) gene replacement mutants were constructed. The GSI activity of the mutant was not down-regulated after an ammonium shock. However, the GSI activity of the wild-type cells decreased to 60% of the original activity. The mutant is not glutamine auxotrophic, but in the γ-glutamyltransferase assay no GSI activity was detected in unshifted and shifted HT107 cells. By snake venom phosphodiesterase treatment the GSI activity in the wild-type can be reconstituted, whereas no alteration is observed in the E4 mutant. Additionally, the loss of short-term GSI regulation in the E4 mutant was accompanied by an increased glutamine:glutamate ratio.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-145-9-2313
1999-09-01
2021-07-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/145/9/1452313a.html?itemId=/content/journal/micro/10.1099/00221287-145-9-2313&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller E., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  2. Atkinson M. R., Ninfa A. J. 1998; Role of the GlnK signal transduction protein in the regulation of nitrogen assimilation in Escherichia coli. Mol Microbiol 29:431–447 [CrossRef]
    [Google Scholar]
  3. Bascarán V, Hardisson C., Braña A. F. 1989; Regulation of nitrogen catabolic enzymes in Streptomyces clavuligerus. J Gen Microbiol 135:2465–2474
    [Google Scholar]
  4. Behrmann I., Hillemann D., Pühler A, Strauch E., Wohlleben W. 1990; Overexpression of a Streptomyces viridochromogenes gene (glnII) encoding a glutamine synthetase similar to those of eukaryotes confers resistance against the antibiotic phosphinothricyl-alanyl-alanine. J Bacteriol 172:5326–5334
    [Google Scholar]
  5. Braña A. F., Paiva N., Demain A. L. 1986; Pathways and regulation of ammonium assimilation in Streptomyces clavuligerus. J Gen Microbiol 132:1305–1317
    [Google Scholar]
  6. Bruntner C., Bormann C. 1998; The Streptomyces tendae TÜ901 l-lysine 2-aminotransferase catalyzes the initial reaction in nikkomycin D biosynthesis. Eur J Biochem 254:347–355 [CrossRef]
    [Google Scholar]
  7. Bullock W. O., Fernandez J. M., Short J. M. 1987; XL1-Blue, a high efficiency plasmid transforming recA Escherichia coli strain with beta galactosidase selection. BioTechniques 5:376–378
    [Google Scholar]
  8. Caban C. E., Ginsburg A. 1976; Glutamine synthetase adenylyltransferase from Escherichia coli: purification and physical and chemical properties. Biochemistry 15:1569–1580 [CrossRef]
    [Google Scholar]
  9. Cole S. T., Brosch R., Parkhill J.39 other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544 [CrossRef]
    [Google Scholar]
  10. Edmands J., Noridge N., Benson D. 1987; The actinorhizal root nodule symbiont Frankia sp. strain CpI1 has two glutamine synthetases. Proc Natl Acad Sci USA 84:6126–6130 [CrossRef]
    [Google Scholar]
  11. Fisher S. H., Sonenshein A. L. 1977; Glutamine-requiring mutants of Bacillus subtilis. Biochem Biophys Res Commun 79:987–995 [CrossRef]
    [Google Scholar]
  12. Fisher S. H., Wray L. V. Jr 1989; Regulation of glutamine synthetase in Streptomyces coelicolor. J Bacteriol 171:2378–2383
    [Google Scholar]
  13. Fleischmann R. D., Adams M. D., White O.37 other authors 1995; Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512 [CrossRef]
    [Google Scholar]
  14. Gish W., States D. J. 1993; Identification of protein coding regions by database similarity search. Nat Genet 3:266–272 [CrossRef]
    [Google Scholar]
  15. He L., Soupene E., Ninfa A., Kustu S. 1998; Physiological role for the GlnK protein of enteric bacteria: relief of NifL inhibition under nitrogen-limiting conditions. J Bacteriol 180:6661–6667
    [Google Scholar]
  16. van Heeswijk W. C., Rabenberg M., Westerhoff H. V., Kahn D. 1993; The genes of the glutamine synthetase adenylylation cascade are not regulated by nitrogen in Escherichia coli. Mol Microbiol 9:443–457 [CrossRef]
    [Google Scholar]
  17. van Heeswijk W. C., Hoving S., Molenaar D., Stegeman, B, Kahn D., Westerhoff H. V. 1996; An alternative PII protein in the regulation of glutamine synthetase in Escherichia coli. Mol Microbiol 21:133–146 [CrossRef]
    [Google Scholar]
  18. Hillemann D., Dammann T., Hillemann A., Wohlleben W. 1993; Genetic and biochemical characterization of the two glutamine synthetases GSI and GSII of the phosphinothricyl-alanyl-alanine producer, Streptomyces viridochromogenes Tü494. J Gen Microbiol 139:1773–1783 [CrossRef]
    [Google Scholar]
  19. Holm L., Sander C. 1995; DNA polymerase beta belongs to an ancient nucleotidyltransferase superfamily. Trends Biochem Sci 20:345–347 [CrossRef]
    [Google Scholar]
  20. Hopwood D. A. 1967; Genetic analysis and genome structure in Streptomyces coelicolor. Bacteriol Rev 31:373–403
    [Google Scholar]
  21. Hopwood D. A., Bibb M. J., Chater K. F.7 other authors 1985 Genetic Manipulation of Streptomyces: a Laboratory Manual Norwich: John Innes Foundation;
    [Google Scholar]
  22. Jaggi R., van Heeswijk W. C., Westerhoff H. V., Ollis D. L., Vasudevan S. G. 1997; The two opposing activities of adenylyltransferase reside in distinct homologous domains, with intramolecular signal transduction. EMBO J 16:5562–5571 [CrossRef]
    [Google Scholar]
  23. Kumada Y., Takano E., Nagaoka K., Thompson C. J. 1990; Streptomyces hygroscopicus has two glutamine synthetase genes. J Bacteriol 172:5343–5351
    [Google Scholar]
  24. Kumada Y., Benson D. R., Hillemann D., Hosted T. J., Rochefort D. A., Thompson C. J., Wohlleben W., Tateno Y. 1993; Evolution of the glutamine synthetase gene, one of the oldest existing and functioning genes. Proc Natl Acad Sci USA 90:3009–3013 [CrossRef]
    [Google Scholar]
  25. Kunst F., Ogasawara N., Moszer I.148 other authors 1997; The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390:249–256 [CrossRef]
    [Google Scholar]
  26. Kustu S., Hirschman J., Burton D., Jelesko J., Meeks J. C. 1984; Covalent modification of bacterial glutamine synthetase: physiological significance. Mol Gen Genet 197:309–317 [CrossRef]
    [Google Scholar]
  27. Lindroth P., Mopper K. 1979; High performance liquid chromatographic determination of subpicomole amounts of amino acids by precolumn fluorescence derivatization with o-phthaldialdehyde. Anal Chem 51:1667–1674 [CrossRef]
    [Google Scholar]
  28. MacNeil D. J., Gewain K. M., Ruby C. L., Dezeny G., Gibbons P. H., MacNeil T. 1992; Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 111:61–68 [CrossRef]
    [Google Scholar]
  29. Magasanik B. 1996; Regulation of nitrogen utilization. I. Cellular and molecular biology. In Escherichia coli and Salmonella, 2nd edn. pp. 1344–1356Edited by Neidhardt F. C.others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  30. Merida A., Candau P., Florencio F. J. 1991; Regulation of glutamine synthetase activity in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803 by the nitrogen source: effect of ammonium. J Bacteriol 173:4095–4100
    [Google Scholar]
  31. Merrick M. J., Edwards R. A. 1995; Nitrogen control in bacteria. Microbiol Rev 59:604–622
    [Google Scholar]
  32. Miller J. H. 1958 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  33. Oh S. H., Chater K. F. 1997; Denaturation of circular or linear DNA facilitates targeted integrative transformation of Streptomyces coelicolor A3(2): possible relevance to other organisms. J Bacteriol 179:122–127
    [Google Scholar]
  34. Okanishi M., Suzuki K., Umezawa H. 1974; Formation and reversion of streptomycete protoplasts: cultural condition and morphological study. J Gen Microbiol 80:389–400 [CrossRef]
    [Google Scholar]
  35. Pearson W. R., Lipman D. J. 1988; Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 85:2444–2448 [CrossRef]
    [Google Scholar]
  36. Penyige A., Kalmanczhelyi A., Sipos A., Ensign J. C., Barabas G. 1994; Modifications of glutamine synthetase in Streptomyces griseus by ADP-ribosylation and adenylylation. Biochem Biophys Res Commun 204:598–605 [CrossRef]
    [Google Scholar]
  37. Pridmore R. D. 1987; New and versatile cloning-vectors with kanamycin-resistance marker. Gene 56:309–312 [CrossRef]
    [Google Scholar]
  38. Redenbach M., Kieser H. M., Denapaite P., Eichner A., Cullum J., Kinashi H., Hopwood D. A. 1996; A set of ordered cosmids and a detailed genetic and physical map for the 8 Mb Streptomyces coelicolor A3(2) chromosome. Mol Microbiol 21:77–96 [CrossRef]
    [Google Scholar]
  39. Reitzer L. J., Magasanik B. 1987; Ammonia assimilation and the biosynthesis of glutamine, glutamate, aspartate, asparagine, l-alanine and d-alanine. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology pp 302–320Edited by Neidhardt F. C. others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  40. Sambrook J. E., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  41. Schreier H. J. 1993; Biosynthesis of glutamine and glutamate and the assimilation of ammonia. In Bacillus subtilis and Other Gram-positive Bacteria: Biochemistry, Physiology, and Molecular Genetics pp 281–298Edited by Sonenshein A. L., Hoch J. A., Losick R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  42. Schreier H. J., Fisher S. H., Sonenshein A. L. 1985; Regulation of expression from the glnA promoter of Bacillus subtilis requires the glnA gene product. Proc Natl Acad Sci USA 82:3375–3379 [CrossRef]
    [Google Scholar]
  43. Schreier H. J., Brown S. W., Hirschi K. D., Nomellini J. F., Sonenshein A. L. 1989; Regulation of Bacillus subtilis glutamine synthetase gene expression by the product of the glnR gene. J Mol Biol 210:51–63 [CrossRef]
    [Google Scholar]
  44. Schwartz D., Alijah R., Nußbaumer B, Pelzer S., Wohlleben W. 1996; The peptide synthetase gene phsA from Streptomyces viridochromogenes is not juxtaposed with other genes involved in nonribosomal biosynthesis of peptides. Appl Environ Microbiol 62:570–577
    [Google Scholar]
  45. Shapiro B. M., Stadtman E. R. 1970; Glutamine synthetase (E. coli). Methods Enzymol 17:910–922
    [Google Scholar]
  46. Shirahama T., Fumurai T., Okanishi M. 1981; A modified regeneration method for streptomycetes protoplasts. Agric Biol Chem 45:1271–1273 [CrossRef]
    [Google Scholar]
  47. Smith P. K., Krohn R. I., Hermanson G. I.7 other authors 1985; Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85 [CrossRef]
    [Google Scholar]
  48. Southern E. M. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517 [CrossRef]
    [Google Scholar]
  49. Staden R., McLachlan A. D. 1982; Codon preference and its use in identifying protein coding regions in large DNA sequences. Nucleic Acids Res 10:141–156 [CrossRef]
    [Google Scholar]
  50. Stadtman E. R., Mura E., Chock P. B., Rhee S. G. 1980; The interconvertible enzyme cascade that regulates glutamine synthetase activity. In Glutamine: Metabolism, Enzymology and Regulation pp 41–59Edited by Mora J., Palacois R. New York: Academic Press;
    [Google Scholar]
  51. Streicher S., Tyler B. 1981; Regulation of glutamine synthetase activity by adenylylation in the gram-positive bacterium Streptomyces cattleya. Proc Natl Acad Sci USA 87:229–233
    [Google Scholar]
  52. Thompson C. J., Ward J. M., Hopwood D. A. 1980; DNA cloning in Streptomyces: resistance genes from antibiotic-producing species. Nature 286:525–527 [CrossRef]
    [Google Scholar]
  53. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  54. Vara J., Lewandowska-Skarbek M., Wang Y. G, Donadio S., Hutchinson C. R. 1989; Cloning of genes governing the deoxysugar portion of the erythromycin biosynthesis pathway in Saccharopolyspora erythraea (Streptomyces erythreus). J Bacteriol 171:5872–5881
    [Google Scholar]
  55. Vieira J., Messing J. 1982; The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268 [CrossRef]
    [Google Scholar]
  56. Wray L. V. Jr, Fisher S. H. 1988; Cloning and nucleotide sequence of the Streptomyces coelicolor gene encoding glutamine synthetase. Gene 71:247–256 [CrossRef]
    [Google Scholar]
  57. Wray L. V. Jr, Fisher S. H. 1993; The Streptomyces coelicolor glnR gene encodes a protein similar to other bacterial response regulators. Gene 130:145–150 [CrossRef]
    [Google Scholar]
  58. Wray L. V. Jr, Ferson A. E., Rohrer K., Fisher S. H. 1996; TnrA, a transcription factor required for global nitrogen regulation in Bacillus subtilis. Proc Natl Acad Sci USA 17:8841–8845
    [Google Scholar]
  59. Wright F., Bibb M. J. 1992; Codon usage in the G+C rich Streptomyces genome. Gene 113:55–65 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-145-9-2313
Loading
/content/journal/micro/10.1099/00221287-145-9-2313
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error