1887

Abstract

The extent to which the transport of glucose across the plasma membrane of the yeast controls the glycolytic flux was determined. The magnitude of control was quantified by measuring the effect of small changes in the activity of the glucose transport system on the rate of glucose consumption. Two effectors were used to modulate the activity of glucose transport: (i) maltose, a competitive inhibitor of the glucose transport system in (as well as in ) and (ii) extracellular glucose, the substrate of the glucose transport system. Two approaches were followed to derive from the experimental data the flux control coefficient of glucose transport on the glycolytic flux: (i) direct comparison of the steady-state glycolytic flux with the zero -influx of glucose and (ii) comparison of the change in glycolytic flux with the concomitant change in calculated glucose transport activity on variation of the extracellular glucose concentration. Both these approaches demonstrated that in cells of grown on glucose and harvested at the point of glucose exhaustion, a high proportion of the control of the glycolytic flux resides in the transport of glucose across the plasma membrane.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-145-12-3447
1999-12-01
2021-08-01
Loading full text...

Full text loading...

/deliver/fulltext/micro/145/12/1453447a.html?itemId=/content/journal/micro/10.1099/00221287-145-12-3447&mimeType=html&fmt=ahah

References

  1. Bakker B. M., Walsh, M. C., Ter Kuile, B. H., Mensonides, F. I. C., Michels, P. A. M., Opperdoes F. R., Westerhoff H. V. 1999; Contribution of glucose transport to the control of the glycolytic flux in Trypanosoma brucei. Proc Natl Acad Sci USA 96:10098–10103 [CrossRef]
    [Google Scholar]
  2. Bergmeyer H. U. 1974 Methods of Enzymatic Analysis Weinheim Verlag Chemie
    [Google Scholar]
  3. Bisson L. F., Fraenkel D. G. 1983; Involvement of kinases in glucose and fructose uptake by Saccharomyces cerevisiae . Proc Natl Acad Sci USA 80:1730–1734 [CrossRef]
    [Google Scholar]
  4. Blázquez, M. A., Lagunas, R., Gancedo C., Gancedo J. M. 1993; Trehalose-6- phosphate, a new regulator of yeast glycolysis that inhibits hexokinases. FEBS Lett 329:51–54 [CrossRef]
    [Google Scholar]
  5. Boles E., Hollenberg C. P. 1997; The molecular genetics of hexose transport in yeasts. FEMS Microbiol Rev 21:85–111 [CrossRef]
    [Google Scholar]
  6. Brown C. J., Todd K. M., Rosenzweig R. F. 1998; Multiple duplications of yeast hexose transport genes in response to selection in a glucose-limited environment. Mol Biol Evol 15:931–942 [CrossRef]
    [Google Scholar]
  7. Carruthers A., Helgerson A. L. 1991; Inhibition of sugar transport produced by ligands binding at opposite sides of the membrane. Evidence for simultaneous occupation of the carrier by maltose and cytochalasin B. Biochemistry 30:3907–3915 [CrossRef]
    [Google Scholar]
  8. De Koning W., Van Dam K. 1992; A method for the determination of changes of glycolytic metabolites in yeast on a subsecond time scale using extraction at neutral pH. Anal Biochem 204:118–123 [CrossRef]
    [Google Scholar]
  9. Diderich J. A., Schepper M., van Hoek P.8 other authors 1999; Glucose uptake kinetics and transcription of HXT genes in chemostat cultures of Saccharomyces cerevisiae. J Biol Chem 274:15350–15359 [CrossRef]
    [Google Scholar]
  10. Does A. L., Bisson L. F. 1989; Comparison of glucose uptake kinetics in different yeasts. J Bacteriol 171:1303–1308
    [Google Scholar]
  11. Fell D. A. 1992; Metabolic control analysis: a survey of its theoretical and experimental development. Biochem J 286:313–330
    [Google Scholar]
  12. Gancedo C., Serrano R. 1989 Energy- yielding Metabolism London: Academic Press;
    [Google Scholar]
  13. Groen A. K., Wanders, R. J. A., Westerhoff, H. V., Van der Meer R., Tager J. M. 1982; Quantification of the contribution of various steps to the control of mitochondrial respiration. J Biol Chem 257:2754–2757
    [Google Scholar]
  14. Heinisch J. 1986; Isolation and characterization of the two structural genes coding for phosphofructokinase in yeast. Mol Gen Genet 202:75–82 [CrossRef]
    [Google Scholar]
  15. Jensen P. R., Westerhoff H. V., Michelsen O. 1993; The use of lac-type promoters in control analysis. Eur J Biochem 211:181–191 [CrossRef]
    [Google Scholar]
  16. Kacser H., Burns J. A. 1973; The control of flux. . Symp Soc Exp Biol 27:65–104
    [Google Scholar]
  17. Kotyk A. 1967; Mobility of the free and of the loaded monosaccharide carrier in Saccharomyces cerevisiae. Biochim Biophys Acta 135:112–119 [CrossRef]
    [Google Scholar]
  18. Kotyk A., Kleinzeller A. 1967; Affinity of the yeast membrane carrier for glucose and its role in the Pasteur effect. . Biochim Biophys Acta 135:106–111 [CrossRef]
    [Google Scholar]
  19. Kruckeberg A. L. 1996; The hexose transporter family of Saccharomyces cerevisiae. . Arch Microbiol 166:283–292 [CrossRef]
    [Google Scholar]
  20. Lacko L., Burger M. 1962; Interaction of some disaccharides with the carrier system for aldoses in erythrocytes. Biochem J 83:622–625
    [Google Scholar]
  21. Mauricio J. C., Salmon J. M. 1992; Apparent loss of sugar transport activity in Saccharomyces cerevisiae may mainly account for maximum ethanol production during alcoholic fermentation. Biotechnol Lett 14:577–582 [CrossRef]
    [Google Scholar]
  22. Oda Y., Tonomura K. 1996; Detection of maltose fermentation genes in the baking yeast strains of Saccharomyces cerevisiae. . Lett Appl Microbiol 23:266–268 [CrossRef]
    [Google Scholar]
  23. Oehlen L. J., W. M., Scholte M. E., De Koning W., Van Dam K. 1994; Decrease in glycolytic flux in Saccharomyces cerevisiae cdc35-1 cells at restrictive temperature correlates with a decrease in glucose transport. Microbiology 140:1891–1898 [CrossRef]
    [Google Scholar]
  24. Pedler S., Wallace P. G., Wallace J. C., Berry M. N. 1997; The fate of glucose in strains S288C and S173-6B of the yeast Saccharomyces cerevisiae . Yeast 13:119–125 [CrossRef]
    [Google Scholar]
  25. Reifenberger E., Freidel K., Ciriacy M. 1995; Identification of novel HXT genes in Saccharomyces cerevisiae reveals the impact of individual hexose transporters on the glycolytic flux. Mol Microbiol 16:157–167 [CrossRef]
    [Google Scholar]
  26. Reifenberger E., Boles E., Ciriacy M. 1997; Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression. Eur J Biochem 245:324–333 [CrossRef]
    [Google Scholar]
  27. Rodrigues de Sousa H., Madeira-Lopes A., Spencer-Martins I. 1995; The significance of active fructose transport and maximum temperature for growth in the taxonomy of Saccharomyces sensu stricto. Syst Appl Microbiol 18:44–51 [CrossRef]
    [Google Scholar]
  28. Ruyter G. J. G., Postma P. W., Van Dam K. 1991; Control of glucose metabolism by enzyme IIGlc of the phosphoenolpyruvate-dependent phosphotransferase system in Escherichia coli. J Bacteriol 173:6184–6191
    [Google Scholar]
  29. Salmon J. M., Mauricio J. C. 1994; Relationship between sugar uptake kinetics and total sugar consumption in different industrial Saccharomyces cerevisiae strains during alcoholic fermentation. Biotechnol Lett 16:89–94 [CrossRef]
    [Google Scholar]
  30. Schaaff I., Heinisch J., Zimmermann F. K. 1989; Overproduction of glycolytic enzymes in yeast. Yeast 5:285–290 [CrossRef]
    [Google Scholar]
  31. Schütz M., Gafner J. 1995; Lower fructose uptake capacity of genetically characterized strains of Saccharomyces bayanus compared to strains of Saccharomyces cerevisiae: a likely cause of reduced alcoholic fermentation activity. Am J Enol Vitic 46:175–180
    [Google Scholar]
  32. Smits H. P., Smits G. J., Postma P. W., Walsh M. C., Van Dam K. 1996; High-affinity glucose uptake in Saccharomyces cerevisiae is not dependent on the presence of glucose phosphorylating enzymes. Yeast 12:439–447 [CrossRef]
    [Google Scholar]
  33. Ter Kuile B. H., Müller M. 1995; Maltose utilization by extracellular hydrolysis followed by glucose transport in Trichomonas vaginalis. Parasitology 110:37–44 [CrossRef]
    [Google Scholar]
  34. Teusink B., Larsson C., Diderich J., Richard P., Van Dam, K., Gustafsson L., Westerhoff H. V. 1996a; Synchronized heat flux oscillations in yeast cell populations. J Biol Chem 271:24442–24448 [CrossRef]
    [Google Scholar]
  35. Teusink B., Walsh M. C., Van Dam, K., Gustafsson L., Westerhoff H. V. 1996b; The extent to which the glycolytic flux in Saccharomyces cerevisiae is controlled by the glucose transport system varies with the extracellular glucose concentration. In 7th International Meeting on Biothermokinetics pp. 417–421Edited by Westerhoff H. V., Snoep J. L. , Wijker J. E. , Sluse F. E. , Kholodenko B. N. Louvain-la-Neuve: BioThermoKinetics Press;
    [Google Scholar]
  36. Teusink B., Diderich J. A., Westerhoff H. V., Van Dam K., Walsh M. C. 1998a; Intracellular glucose concentration in derepressed yeast cells consuming glucose is high enough to reduce the glucose transport rate by 50%. J Bacteriol 180:556–562
    [Google Scholar]
  37. Teusink B., Walsh M. C., Van Dam K., Westerhoff H. V. 1998b; The danger of metabolic pathways with turbo design. Trends Biochem Sci 23:162–169 [CrossRef]
    [Google Scholar]
  38. Theodoris G., Fong N. M., Coons D. M., Bisson L. F. 1994; High-copy suppression of glucose transport defects by HXT4 and regulatory elements in the promoters of the HXT genes in Saccharomyces cerevisiae. Genetics 137:957–966
    [Google Scholar]
  39. Thevelein J. M., Hohmann S. 1995; Trehalose synthase: guard to the gate of glycolysis in yeast?. Trends Biochem Sci 20:3–10 [CrossRef]
    [Google Scholar]
  40. Van Dam K. 1986; Biochemistry is a quantitative science. Trends Biochem Sci 11:13–14 [CrossRef]
    [Google Scholar]
  41. Vaughan-Martini A., Martini A. 1989 A Proposal for the Correct Nomenclature of the Domesticated Species of the Genus Saccharomyces London: Elsevier;
    [Google Scholar]
  42. Walsh M. C., Smits H. P., Scholte M., Van Dam K. 1994a; Affinity of glucose transport in Saccharomyces cerevisiae is modulated during growth on glucose. J Bacteriol 176:953–958
    [Google Scholar]
  43. Walsh M. C., Smits H. P., Van Dam K. 1994b; Respiratory inhibitors affect incorporation of glucose into Saccharomyces cerevisiae, but not the activity of glucose transport. Yeast 10:1553–1558 [CrossRef]
    [Google Scholar]
  44. Westerhoff H. V., Kholodenko B. N., Cascante M., Van Dam K. 1995; Elusive control. J Bioenerg Biomembr 27:491–497 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-145-12-3447
Loading
/content/journal/micro/10.1099/00221287-145-12-3447
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error